Imidazoles

咪唑
  • 文章类型: Journal Article
    An intelligent nanodrug delivery system (Cu/ZIF-8@GOx-DOX@HA, hereafter CZGDH) consisting of Cu-doped zeolite imidazolate framework-8 (Cu/ZIF-8, hereafter CZ), glucose oxidase (GOx), doxorubicin (DOX), and hyaluronic acid (HA) was established for targeted drug delivery and synergistic therapy of tumors. The CZGDH specifically entered tumor cells through the targeting effect of HA and exhibited acidity-triggered biodegradation for subsequent release of GOx, DOX, and Cu2+ in the tumor microenvironment (TME). The GOx oxidized the glucose (Glu) in tumor cells to produce H2O2 and gluconic acid for starvation therapy (ST). The DOX entered the intratumoral cell nucleus for chemotherapy (CT). The released Cu2+ consumed the overexpressed glutathione (GSH) in tumor cells to produce Cu+. The generated Cu+ and H2O2 triggered the Fenton-like reaction to generate toxic hydroxyl radicals (·OH), which disrupted the redox balance of tumor cells and effectively killed tumor cells for chemodynamic therapy (CDT). Therefore, synergistic multimodal tumor treatment via TME-activated cascade reaction was achieved. The nanodrug delivery system has a high drug loading rate (48.3 wt%), and the three-mode synergistic therapy has a strong killing effect on tumor cells (67.45%).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Imidazole-chalcone compounds are recognised for their broad-spectrum antimicrobial properties. Probiotic-friendly, selective new-generation antimicrobials prove to be more efficient in combating gastrointestinal system pathogens. The aim of this study is to identify imidazole-chalcone derivatives that probiotics tolerate and evaluate their in vitro synergistic antimicrobial effects on pathogens. In this study, fifteen previously identified imidazole-chalcone derivatives were analyzed for their in vitro antimicrobial properties against gastrointestinal microorganisms. Initially, the antimicrobial activity of pathogens was measured using the agar well diffusion method, while the susceptibility of probiotics was determined by microdilution. The chosen imidazole-chalcone derivatives were assessed for synergistic effects using the checkerboard method. Four imidazole-chalcone derivatives to which probiotic bacteria were tolerant exhibited antibacterial and antifungal activity against the human pathogens tested. To our knowledge, this study is the first to reveal the fractional inhibitory concentration (FIC) of combinations of imidazole-chalcone derivatives. Indeed, the minimum inhibitory concentrations (MIC) for morpholinyl- (ZDO-3f) and 4-ethylpiperazinyl- (ZDO-3 m) imidazole-chalcones were notably low when tested against E. coli and B. subtilis, with values of 31.25 μg/mL and 125 μg/mL, respectively. The combination of morpholinyl- and 4-ethylpiperazinyl derivatives demonstrated an indifferent effect against E. coli, but an additive effect was observed for B. subtilis. Additionally, it was observed that imidazole-chalcone derivatives did not exhibit any inhibitory effects on probiotic organisms like Lactobacillus fermentum (CECT-5716), Lactobacillus rhamnosus (GG), and Lactobacillus casei (RSSK-591). This study demonstrates that imidazole-chalcone derivatives that are well tolerated by probiotics can potentially exert a synergistic effect against gastrointestinal system pathogens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Vaccination can help prevent infection and can also be used to treat cancer, allergy, and potentially even drug overdose. Adjuvants enhance vaccine responses, but currently, the path to their advancement and development is incremental. We used a phenotypic small-molecule screen using THP-1 cells to identify nuclear factor-κB (NF-κB)-activating molecules followed by counterscreening lead target libraries with a quantitative tumor necrosis factor immunoassay using primary human peripheral blood mononuclear cells. Screening on primary cells identified an imidazopyrimidine, dubbed PVP-037. Moreover, while PVP-037 did not overtly activate THP-1 cells, it demonstrated broad innate immune activation, including NF-κB and cytokine induction from primary human leukocytes in vitro as well as enhancement of influenza and SARS-CoV-2 antigen-specific humoral responses in mice. Several de novo synthesis structural enhancements iteratively improved PVP-037\'s in vitro efficacy, potency, species-specific activity, and in vivo adjuvanticity. Overall, we identified imidazopyrimidine Toll-like receptor-7/8 adjuvants that act in synergy with oil-in-water emulsion to enhance immune responses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    离子液体(IL)是具有广泛的工业和科学应用的令人感兴趣的化合物。它们有非凡的性能,例如它们许多物理性质的可调性,因此,他们的活动;以及合成方法的简易性。因此,它们成为催化的重要组成部分,提取,电化学,分析,生物技术,等。本研究通过最小抑制浓度(MIC)估算方法确定了各种基于咪唑鎓的离子液体对酿酒酵母的抗真菌活性。增加连接到咪唑鎓阳离子的烷基的长度,增强了IL的抗真菌活性,以及它们破坏细胞膜完整性的能力。在用IL处理的酿酒酵母细胞上进行的FTIR研究揭示了这些细胞的生化组成的改变。有趣的是,在连接的烷基的长度增加时,脂肪酸含量的变化与分子活性的增加同时发生。统计分析和机器学习方法证实了这一趋势。根据酿酒酵母细胞的FTIR光谱对抗真菌活性进行分类,预测准确率为83%,这表明制药和医药行业可以从机器学习方法中受益。此外,合成的离子化合物在药物和医学应用中表现出巨大的潜力。
    Ionic liquids (ILs) are interesting chemical compounds that have a wide range of industrial and scientific applications. They have extraordinary properties, such as the tunability of many of their physical properties and, accordingly, their activities; and the ease of synthesis methods. Hence, they became important building blocks in catalysis, extraction, electrochemistry, analytics, biotechnology, etc. This study determined antifungal activities of various imidazolium-based ionic liquids against yeast Saccharomyces cerevisiae via minimum inhibitory concentration (MIC) estimation method. Increasing the length of the alkyl group attached to the imidazolium cation, enhanced the antifungal activity of the ILs, as well as their ability of the disruption of the cell membrane integrity. FTIR studies performed on the S. cerevisiae cells treated with the ILs revealed alterations in the biochemical composition of these cells. Interestingly, the alterations in fatty acid content occurred in parallel with the increase in the activity of the molecules upon the increase in the length of the attached alkyl group. This trend was confirmed by statistical analysis and machine learning methodology. The classification of antifungal activities based on FTIR spectra of S. cerevisiae cells yielded a prediction accuracy of 83%, indicating the pharmacy and medicine industries could benefit from machine learning methodology. Furthermore, synthesized ionic compounds exhibit significant potential for pharmaceutical and medical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:预测癌症药物反应需要对整个肿瘤基因组中存在的许多突变进行全面评估。虽然目前的药物反应模型通常使用每个基因的二元突变/未突变指标,不是所有的基因突变都是相同的.
    结果:这里,我们构建并评估了一系列基于领先的定量突变评分方法的预测模型。这些方法包括VEST4和CADD,对突变对基因功能的影响进行评分,和CHASMplus,对突变导致癌症的可能性进行评分。由此产生的预测模型捕获了细胞对dabrafenib的反应,针对BRAF-V600突变,而基于二元突变状态的模型则没有。性能改进推广到其他药物,扩展PIK3CA的遗传适应症,ERBB2,EGFR,PARP1和ABL1抑制剂。在药物反应模型中引入定量突变特征可提高性能和机理理解。
    方法:代码和示例数据集可在https://github.com/pgwall/qms获得。
    BACKGROUND: Predicting cancer drug response requires a comprehensive assessment of many mutations present across a tumor genome. While current drug response models generally use a binary mutated/unmutated indicator for each gene, not all mutations in a gene are equivalent.
    RESULTS: Here, we construct and evaluate a series of predictive models based on leading methods for quantitative mutation scoring. Such methods include VEST4 and CADD, which score the impact of a mutation on gene function, and CHASMplus, which scores the likelihood a mutation drives cancer. The resulting predictive models capture cellular responses to dabrafenib, which targets BRAF-V600 mutations, whereas models based on binary mutation status do not. Performance improvements generalize to other drugs, extending genetic indications for PIK3CA, ERBB2, EGFR, PARP1, and ABL1 inhibitors. Introducing quantitative mutation features in drug response models increases performance and mechanistic understanding.
    METHODS: Code and example datasets are available at https://github.com/pgwall/qms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目标:黑色素瘤,一种皮肤癌的变种,在所有皮肤癌中死亡率最高。尽管靶向治疗取得了进展,免疫疗法,和组织培养技术,缺乏有效的早期治疗模式仍然是一个挑战.这项研究调查了dabrafenib对具有不同分子谱的2D和3D细胞培养模型的影响。
    方法:我们开发了一种高通量的工作流程,能够对球体进行药物筛选。我们的方法涉及培养源自正常黑素细胞和转移性黑色素瘤细胞的2D和3D培养物,用dabrafenib治疗并进行生存能力,聚合,迁移,细胞周期,和细胞凋亡测定。
    结果:Dabrafenib施加了多方面的影响,特别是在浓度为10和25μM的迁移时。它诱导细胞活力下降,阻碍了细胞对基质的粘附,抑制细胞聚集和球状体形成,细胞周期停滞在G1期,诱导细胞凋亡。
    结论:这些结果证实了dabrafenib在治疗具有BRAFV600E突变的黑色素瘤方面的治疗潜力,并且3D模型是研究新分子用于治疗目的的潜力的有效模型。此外,我们的研究强调了3D模型在模拟体内生理微环境中的相关性,提供对正常细胞和肿瘤细胞之间不同治疗反应的见解。
    OBJECTIVE: Melanoma, a variant of skin cancer, presents the highest mortality rates among all skin cancers. Despite advancements in targeted therapies, immunotherapies, and tissue culture techniques, the absence of an effective early treatment model remains a challenge. This study investigated the impact of dabrafenib on both 2D and 3D cell culture models with distinct molecular profiles.
    METHODS: We developed a high-throughput workflow enabling drug screening on spheroids. Our approach involved cultivating 2D and 3D cultures derived from normal melanocytes and metastatic melanoma cells, treating them with dabrafenib and conducting viability, aggregation, migration, cell cycle, and apoptosis assays.
    RESULTS: Dabrafenib exerted multifaceted influences, particularly on migration at concentrations of 10 and 25 μM. It induced a decrease in cell viability, impeded cellular adhesion to the matrix, inhibited cellular aggregation and spheroid formation, arrested the cell cycle in the G1 phase, and induced apoptosis.
    CONCLUSIONS: These results confirm the therapeutic potential of dabrafenib in treating melanoma with the BRAF V600E mutation and that 3D models are validated models to study the potential of new molecules for therapeutic purposes. Furthermore, our study underscores the relevance of 3D models in simulating physiological in vivo microenvironments, providing insights into varied treatment responses between normal and tumor cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在这项研究中,通过外延生长法合成了混合骨架材料ZIF-8@ZIF-67,然后将其用作通过共沉淀法包封荧光假单胞菌脂肪酶(PFL)的载体,从而制备固定化脂肪酶(PFL@ZIF-8@ZIF-67)。随后,进一步用戊二醛处理以提高蛋白质固定化率。在最佳固定条件下,PFL@ZIF-8@ZIF-67的比水解活性是游离PFL的20.4倍。通过扫描电子显微镜(SEM)对所制备的生物催化剂进行了表征和分析,X射线衍射(XRD)傅里叶变换红外(FT-IR)。此外,与游离PFL相比,PFL@ZIF-8@ZIF-67在50°C下的热稳定性显着提高。在室温下放置7周后,PFL@ZIF-8@ZIF-67保留了78%的酯交换活性,而游离酶仅为29%。最后,将PFL@ZIF-8@ZIF-67应用于无溶剂体系中的乙酸金花酯制剂,反应3h后,乙酸金花酯的收率达到99%。重复10次之后,PFL@ZIF-8@ZIF-67和游离PFL催化的乙酸金花酯的收率分别为80%和43%,分别。
    In this study, hybrid skeleton material ZIF-8@ZIF-67 was synthesized by the epitaxial growth method and then was utilized as a carrier for encapsulating Pseudomonas fluorescens lipase (PFL) through the co-precipitation method, resulting in the preparation of immobilized lipase (PFL@ZIF-8@ZIF-67). Subsequently, it was further treated with glutaraldehyde to improve protein immobilization yield. Under optimal immobilization conditions, the specific hydrolytic activity of PFL@ZIF-8@ZIF-67 was 20.4 times higher than that of the free PFL. The prepared biocatalyst was characterized and analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR). Additionally, the thermal stability of PFL@ZIF-8@ZIF-67 at 50 °C was significantly improved compared to the free PFL. After 7 weeks at room temperature, PFL@ZIF-8@ZIF-67 retained 78% of the transesterification activity, while the free enzyme was only 29%. Finally, PFL@ZIF-8@ZIF-67 was applied to the neryl acetate preparation in a solvent-free system, and the yield of neryl acetate reached 99% after 3 h of reaction. After 10 repetitions, the yields of neryl acetate catalyzed by PFL@ZIF-8@ZIF-67 and the free PFL were 80% and 43%, respectively.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基因组——生命之源和进化平台——不断暴露于有害因素,细胞外和细胞内。它们的活动会导致不同类型的DNA损伤,到目前为止,已经确定了大约80种不同类型的病变。在本文中,研究了含有咪唑酮(Iz)或恶唑酮(Oz)和7,8-二氢-8-氧代-2'-脱氧鸟苷(OXOdG)的簇状DNA损伤位点对通过双螺旋的电荷转移及其电子性质的影响。为此,oligo-Iz的结构,d[A1Iz2A3OXOG4A5]*d[T5C4T3C2T1],和寡核苷酸-Oz,d[A1Oz2A3OXOG4A5]*d[T5C4T3C2T1],使用ONIOM方法在水相中的理论的M06-2X/6-D95**/M06-2X/sto-3G水平下进行了优化;所有讨论的能量均在理论的M06-2X/6-31G**水平下获得。考虑了非平衡和平衡的溶剂-溶质相互作用。发现以下结果:(A)在所有讨论的情况下,OXOdG显示出更高的自由基阳离子形成倾向,和B)朝向Iz和Oz的过量电子迁移是优选的。然而,在oligo-Oz的情况下,在垂直绝热阴离子弛豫过程中,注意到从Oz2到互补C4的电子转移,而对于oligo-Iz,它只固定在Iz2部分上。上述内容反映在电荷转移速率常数中,垂直/绝热电离电势,和电子亲和能量值,以及电荷和自旋分布。可以推测,CDLds-oligo结构中咪唑酮部分的形成及其向恶唑酮的转化可以显着影响电荷迁移过程,取决于C2碳杂交sp2或sp3。以上可以混淆单个DNA损伤识别和去除过程,导致诱变增加,并损害抗癌治疗的有效性。
    The genome-the source of life and platform of evolution-is continuously exposed to harmful factors, both extra- and intra-cellular. Their activity causes different types of DNA damage, with approximately 80 different types of lesions having been identified so far. In this paper, the influence of a clustered DNA damage site containing imidazolone (Iz) or oxazolone (Oz) and 7,8-dihydro-8-oxo-2\'-deoxyguanosine (OXOdG) on the charge transfer through the double helix as well as their electronic properties were investigated. To this end, the structures of oligo-Iz, d[A1Iz2A3OXOG4A5]*d[T5C4T3C2T1], and oligo-Oz, d[A1Oz2A3OXOG4A5]*d[T5C4T3C2T1], were optimized at the M06-2X/6-D95**//M06-2X/sto-3G level of theory in the aqueous phase using the ONIOM methodology; all the discussed energies were obtained at the M06-2X/6-31++G** level of theory. The non-equilibrated and equilibrated solvent-solute interactions were taken into consideration. The following results were found: (A) In all the discussed cases, OXOdG showed a higher predisposition to radical cation formation, and B) the excess electron migration toward Iz and Oz was preferred. However, in the case of oligo-Oz, the electron transfer from Oz2 to complementary C4 was noted during vertical to adiabatic anion relaxation, while for oligo-Iz, it was settled exclusively on the Iz2 moiety. The above was reflected in the charge transfer rate constant, vertical/adiabatic ionization potential, and electron affinity energy values, as well as the charge and spin distribution. It can be postulated that imidazolone moiety formation within the CDL ds-oligo structure and its conversion to oxazolone can significantly influence the charge migration process, depending on the C2 carbon hybridization sp2 or sp3. The above can confuse the single DNA damage recognition and removal processes, cause an increase in mutagenesis, and harm the effectiveness of anticancer therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    皮肤黑素瘤是人类皮肤恶性肿瘤的最危险和致命形式。尽管它很罕见,它占皮肤癌死亡总数的惊人的80%。此外,它的最后阶段通常表现出对药物治疗的抗性,导致不利的结果。因此,对于患有这种严重疾病的患者,确保获得新型和改良的化学治疗剂至关重要。吡唑及其衍生的稠合系统是药物化学中广泛使用的杂芳族部分,用于开发各种治疗领域的有效药物。包括炎症,疼痛,氧化,病原体,抑郁症,和发烧。在之前的研究中,我们描述了一组新合成的咪唑并吡唑化合物的生化性质。在本文中,为了提高我们对这些分子药理特性的认识,我们对使用这些咪唑并吡唑衍生物之一处理的人黑色素瘤细胞系进行了差异蛋白质组学分析。我们的结果详细介绍了3e咪唑并吡唑处理24、48和72小时诱导的SKMEL-28细胞系蛋白质组的变化。值得注意的是,我们强调了Ras反应元件结合蛋白1(RREB1)的下调,锌指转录因子家族成员参与黑色素瘤的肿瘤发生。RREB1是MAPK通路的下游元件,ERK1/2通过磷酸化介导其活化。
    Cutaneous melanoma is the most dangerous and deadly form of human skin malignancy. Despite its rarity, it accounts for a staggering 80% of deaths attributed to cutaneous cancers overall. Moreover, its final stages often exhibit resistance to drug treatments, resulting in unfavorable outcomes. Hence, ensuring access to novel and improved chemotherapeutic agents is imperative for patients grappling with this severe ailment. Pyrazole and its fused systems derived thereof are heteroaromatic moieties widely employed in medicinal chemistry to develop effective drugs for various therapeutic areas, including inflammation, pain, oxidation, pathogens, depression, and fever. In a previous study, we described the biochemical properties of a newly synthesized group of imidazo-pyrazole compounds. In this paper, to improve our knowledge of the pharmacological properties of these molecules, we conduct a differential proteomic analysis on a human melanoma cell line treated with one of these imidazo-pyrazole derivatives. Our results detail the changes to the SKMEL-28 cell line proteome induced by 24, 48, and 72 h of 3e imidazo-pyrazole treatment. Notably, we highlight the down-regulation of the Ras-responsive element binding protein 1 (RREB1), a member of the zinc finger transcription factors family involved in the tumorigenesis of melanoma. RREB1 is a downstream element of the MAPK pathway, and its activation is mediated by ERK1/2 through phosphorylation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:星形胶质细胞是中枢神经系统中最丰富的细胞类型,并且从根本上参与稳态,神经保护,和突触可塑性。星形胶质细胞对健康大脑中相邻细胞的这种调节功能是当前研究的主题。在缺血性脑中,我们假设星形细胞作用的疾病特异性差异。肾素-血管紧张素-醛固酮系统通过内皮细胞和血管周围肌肉组织调节动脉血压。此外,星形胶质细胞表达血管紧张素II1型和2型受体。然而,它们在星形细胞功能中的作用尚未完全阐明。我们假设血管紧张素II受体影响星形胶质细胞功能,如在模拟脑缺血的体外系统中所揭示的那样。在正常条件(对照)或缺乏氧气和葡萄糖的情况下,将来自新生wistar大鼠的星形胶质细胞暴露于替米沙坦(血管紧张素II1型受体阻滞剂)或PD123319(血管紧张素II2型受体阻滞剂)。收获星形胶质细胞的条件培养基(CM)以阐明星形胶质细胞介导的对小胶质细胞和皮质神经元的间接影响。
    结果:替米沙坦阻断血管紧张素II1型受体在体外缺血条件下增加了星形胶质细胞的存活,而不影响其增殖率或干扰其激活标志物S100A10的表达。PD123319对血管紧张素II2型受体途径的抑制导致S100A10的表达和增殖率增加。替米沙坦治疗的星形胶质细胞的CM降低了促炎介质的表达,同时增加了小胶质细胞中的抗炎标志物。用telmisartan和PD123319刺激的星形胶质细胞的CM处理神经元后,观察到神经元活性增加。
    结论:数据显示,血管紧张素II受体对星形胶质细胞具有功能相关性,在健康和缺血条件下不同,并通过分泌信号影响小胶质细胞和神经元活动。在这上面,这项工作强调了中枢神经系统中不同细胞的强烈干扰,并且靶向星形胶质细胞可能作为一种治疗策略,在去再生和再生环境中影响神经胶质神经元网络的作用.
    BACKGROUND: Astrocytes are the most abundant cell type of the central nervous system and are fundamentally involved in homeostasis, neuroprotection, and synaptic plasticity. This regulatory function of astrocytes on their neighboring cells in the healthy brain is subject of current research. In the ischemic brain we assume disease specific differences in astrocytic acting. The renin-angiotensin-aldosterone system regulates arterial blood pressure through endothelial cells and perivascular musculature. Moreover, astrocytes express angiotensin II type 1 and 2 receptors. However, their role in astrocytic function has not yet been fully elucidated. We hypothesized that the angiotensin II receptors impact astrocyte function as revealed in an in vitro system mimicking cerebral ischemia. Astrocytes derived from neonatal wistar rats were exposed to telmisartan (angiotensin II type 1 receptor-blocker) or PD123319 (angiotensin II type 2 receptor-blocker) under normal conditions (control) or deprivation from oxygen and glucose. Conditioned medium (CM) of astrocytes was harvested to elucidate astrocyte-mediated indirect effects on microglia and cortical neurons.
    RESULTS: The blockade of angiotensin II type 1 receptor by telmisartan increased the survival of astrocytes during ischemic conditions in vitro without affecting their proliferation rate or disturbing their expression of S100A10, a marker of activation. The inhibition of the angiotensin II type 2 receptor pathway by PD123319 resulted in both increased expression of S100A10 and proliferation rate. The CM of telmisartan-treated astrocytes reduced the expression of pro-inflammatory mediators with simultaneous increase of anti-inflammatory markers in microglia. Increased neuronal activity was observed after treatment of neurons with CM of telmisartan- as well as PD123319-stimulated astrocytes.
    CONCLUSIONS: Data show that angiotensin II receptors have functional relevance for astrocytes that differs in healthy and ischemic conditions and effects surrounding microglia and neuronal activity via secretory signals. Above that, this work emphasizes the strong interference of the different cells in the CNS and that targeting astrocytes might serve as a therapeutic strategy to influence the acting of glia-neuronal network in de- and regenerative context.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号