Formate Dehydrogenases

甲酸脱氢酶
  • 文章类型: Journal Article
    来自念珠菌的烟酰胺腺嘌呤二核苷酸依赖性甲酸脱氢酶固定在金表面的1,2-二肉豆蔻酰基-sn-甘油-3-磷酸胆碱/胆固醇漂浮脂质双层中,作为电化学CO2还原的生物催化剂。我们报告说,与普遍的信念相反,该酶可以催化CO2电化学还原为甲酸,而无需辅因子质子化烟酰胺腺嘌呤二核苷酸。电化学数据表明,酶催化的CO2还原是扩散控制的,并且是可逆反应。通过表面增强红外反射吸收光谱研究了酶的取向和构象。酶的α-螺旋采用几乎平行于表面的方向,使其活动中心靠近金表面。该取向允许CO2和金电极之间的直接电子转移。本文的结果为开发用于CO2还原的酶电催化剂提供了新的方法。
    Nicotinamide adenine dinucleotide-dependent formate dehydrogenase from Candida boidinii was immobilized in a 1,2-dimyristoyl-sn-glycero-3-phosphocholine/cholesterol floating lipid bilayer on the gold surface as a biocatalyst for electrochemical CO2 reduction. We report that, in contrast to common belief, the enzyme can catalyze the electrochemical reduction of CO2 to formate without the cofactor protonated nicotinamide adenine dinucleotide. The electrochemical data indicate that the enzyme-catalyzed reduction of CO2 is diffusion-controlled and is a reversible reaction. The orientation and conformation of the enzyme were investigated by surface-enhanced infrared reflection absorption spectroscopy. The α-helix of the enzyme adopts an orientation nearly parallel to the surface, bringing its active center close to the gold surface. This orientation allows direct electron transfer between CO2 and the gold electrode. The results in this paper provide a new method for the development of enzymatic electrocatalysts for CO2 reduction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    NAD(H)依赖性酶在药物和精细化学品的生物合成中起着至关重要的作用,但是NAD(H)辅因子的有限可回收性阻碍了其更广泛的应用。这里,我们报道了机械响应性PEI修饰的Cry3Aa蛋白质晶体的产生及其在多个反应循环中用于NADH回收的用途。为了证明其实用性,已经产生了互补的Cry3Aa蛋白颗粒,其含有用于NADH再生的遗传编码和共固定的甲酸脱氢酶和用于催化NADH依赖性l-叔亮氨酸(l-tert-Leu)生物合成的亮氨酸脱氢酶。当与PEI改性的Cry3Aa晶体结合时,所得反应系统可用于1-tert-Leu的有效生物合成长达21天,NADH周转数提高了10.5倍。
    NAD(H)-dependent enzymes play a crucial role in the biosynthesis of pharmaceuticals and fine chemicals, but the limited recyclability of the NAD(H) cofactor hinders its more general application. Here, we report the generation of mechano-responsive PEI-modified Cry3Aa protein crystals and their use for NADH recycling over multiple reaction cycles. For demonstration of its practical utility, a complementary Cry3Aa protein particle containing genetically encoded and co-immobilized formate dehydrogenase for NADH regeneration and leucine dehydrogenase for catalyzing the NADH-dependent l-tert-leucine (l-tert-Leu) biosynthesis has been produced. When combined with the PEI-modified Cry3Aa crystal, the resultant reaction system could be used for the efficient biosynthesis of l-tert-Leu for up to 21 days with a 10.5-fold improvement in the NADH turnover number.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: English Abstract
    1,4-环己烷二甲胺(1,4-BAC)是生物基材料的重要单体,它在包括有机合成在内的各个领域得到了广泛的应用,医学,化学工业,和材料。目前,它的合成主要依靠化学方法,受到诸如昂贵的金属催化剂等问题的困扰,苛刻的反应条件,和安全风险。因此,有必要为其合成探索更绿色的替代品。在这项研究中,成功开发了一种双细菌三酶级联转化途径,将1,4-环己烷二甲醛转化为1,4-环己烷二甲胺。该途径使用大肠杆菌衍生的氨基转移酶(EcTA),酿酒酵母谷氨酸脱氢酶(ScGlu-DH),和博伊丁念珠菌衍生的甲酸脱氢酶(CbFDH)。通过结构引导的蛋白质工程,一个有益的突变体,EcTAF91Y,获得了,与野生型相比,比活性增加2.2倍,kcat/Km增加1.9倍。通过构建重组菌株和优化反应条件,发现在最优条件下,底物浓度为40g/L可产生(27.4±0.9)g/L的产物,对应于67.5%±2.1%的摩尔转化率。
    1,4-cyclohexanedimethylamine (1,4-BAC) is an important monomer for bio-based materials, it finds wide applications in various fields including organic synthesis, medicine, chemical industry, and materials. At present, its synthesis primarily relies on chemical method, which suffer from issues such as expensive metal catalyst, harsh reaction conditions, and safety risks. Therefore, it is necessary to explore greener alternatives for its synthesis. In this study, a two-bacterium three-enzyme cascade conversion pathway was successfully developed to convert 1,4-cyclohexanedicarboxaldehyde to 1,4-cyclohexanedimethylamine. This pathway used Escherichia coli derived aminotransferase (EcTA), Saccharomyces cerevisiae derived glutamate dehydrogenase (ScGlu-DH), and Candida boidinii derived formate dehydrogenase (CbFDH). Through structure-guided protein engineering, a beneficial mutant, EcTAF91Y, was obtained, exhibiting a 2.2-fold increase in specific activity and a 1.9-fold increase in kcat/Km compared to that of the wild type. By constructing recombinant strains and optimizing reaction conditions, it was found that under the optimal conditions, a substrate concentration of 40 g/L could produce (27.4±0.9) g/L of the product, corresponding to a molar conversion rate of 67.5%±2.1%.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    合成生物学正在为全球净负碳经济的发展做出贡献,强调甲酸盐作为一碳底物的一员引起了广泛的关注。在这项研究中,我们采用了基础编辑工具来促进自适应进化,在2个月内实现Yarrowialipolytica对1M的甲酸耐受性。这项努力导致了两个突变菌株,命名为M25-70和M25-14,两者均表现出显著提高的甲酸盐利用能力。转录组分析显示,当利用甲酸盐作为唯一碳源培养时,编码甲酸脱氢酶的9个内源基因上调。此外,我们发现了基于乙醛酸和苏氨酸的丝氨酸途径在增强甘氨酸供应以促进甲酸同化方面的关键作用。Y.Lipolytica耐受和利用甲酸的全部潜力为基于丙酮酸羧化酶的碳封存途径奠定了基础。重要的是,这项研究强调了Y.Lipolytica中天然甲酸代谢途径的存在。
    Synthetic biology is contributing to the advancement of the global net-negative carbon economy, with emphasis on formate as a member of the one-carbon substrate garnering substantial attention. In this study, we employed base editing tools to facilitate adaptive evolution, achieving a formate tolerance of Yarrowia lipolytica to 1 M within 2 months. This effort resulted in two mutant strains, designated as M25-70 and M25-14, both exhibiting significantly enhanced formate utilization capabilities. Transcriptomic analysis revealed the upregulation of nine endogenous genes encoding formate dehydrogenases when cultivated utilizing formate as the sole carbon source. Furthermore, we uncovered the pivotal role of the glyoxylate and threonine-based serine pathway in enhancing glycine supply to promote formate assimilation. The full potential of Y. lipolytica to tolerate and utilize formate establishing the foundation for pyruvate carboxylase-based carbon sequestration pathways. Importantly, this study highlights the existence of a natural formate metabolic pathway in Y. lipolytica.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    埃索美拉唑是治疗胃食管反流病最流行的质子泵抑制剂。以前,苯丙酮单加氧酶突变体LnPAMOmu15(LM15)是通过蛋白质工程获得的,以吡美唑为底物,用于不对称合成埃索美拉唑。扩大埃索美拉唑的全细胞不对称合成,降低成本,在这项工作中,通过优化的基因组装模式,构建了具有LM15和稳定伯克霍尔德氏菌15516(BstFDH)的甲酸脱氢酶的大肠杆菌全细胞催化剂。CRISPR/Cas9介导的Ptrc启动子在基因组中的插入是为了增强关键基因的表达以增加细胞内NADP供应的全细胞催化剂,用于不对称合成埃索美拉唑的外部添加NADP+的量从0.3mM降至0.05mM,以降低成本。反应器内反应条件优化后,使用有效的LM15-BstFDH全细胞作为催化剂进行埃索美拉唑的可扩展合成,在50mM吡美唑负载下,报告的时空产率最高,为3.28g/L/h。进行分离程序以获得99.55%纯度和>99.9%ee的埃索美拉唑钠,分离产率为90.1%。这项工作为通过经济有效的全细胞生物催化生产对映体纯的埃索美拉唑提供了基础。
    Esomeprazole is the most popular proton pump inhibitor for treating gastroesophageal reflux disease. Previously, a phenylacetone monooxygenase mutant LnPAMOmu15 (LM15) was obtained by protein engineering for asymmetric synthesis of esomeprazole using pyrmetazole as substrate. To scale up the whole cell asymmetric synthesis of esomeprazole and reduce the cost, in this work, an Escherichia coli whole-cell catalyst harboring LM15 and formate dehydrogenase from Burkholderia stabilis 15516 (BstFDH) were constructed through optimized gene assembly patterns. CRISPR/Cas9 mediated insertion of Ptrc promoter in genome was done to enhance the expression of key genes to increase the cellular NADP supply in the whole cell catalyst, by which the amount of externally added NADP+ for the asymmetric synthesis of esomeprazole decreased to 0.05 mM from 0.3 mM for reducing the cost. After the optimization of reaction conditions in the reactor, the scalable synthesis of esomeprazole was performed using the efficient LM15-BstFDH whole-cell as catalyst, which showed the highest reported space-time yield of 3.28 g/L/h with 50 mM of pyrmetazole loading. Isolation procedure was conducted to obtain esomeprazole sodium of 99.55 % purity and > 99.9 % ee with 90.1 % isolation yield. This work provides the basis for production of enantio-pure esomeprazole via cost-effective whole cell biocatalysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    碳环-ddA的合成,一种有效的抗乙型肝炎的抗病毒药物,显著依赖于(1R,3R)-3-羟基环戊烯乙醇作为关键中间体。为了有效地生产这种中间体,我们的研究采用了化学酶的方法。选择合适的生物催化剂是基于底物相似性,导致我们采用源自ThermusscotogutusSA-01的CrS烯酸还原酶。此外,我们开发了一种用于NADH再生的酶系统,利用博伊氏念珠菌的甲酸脱氢酶。该系统促进了(S)-4-(羟甲基)环戊-2-烯酮的有效催化,导致形成(3R)-3-(羟甲基)环戊酮。此外,我们成功克隆,表达,纯化,并对大肠杆菌中的CrS酶进行了表征。确定了最佳反应条件,显示最高活性发生在45°C和pH8.0。通过使用5mM(S)-4-(羟甲基)环戊-2-烯酮,0.05mMFMN,0.2mMNADH,10μMCrS,40μM甲酸脱氢酶,和40mM甲酸钠,在35°C和pH7.0下在45分钟内实现完全转化。随后,(1R,通过简单的三步化学转化过程获得3R)-3-羟基环戊烯乙醇。这项研究不仅提供了合成关键中间体的有效方法,而且还强调了生物催化剂和酶系统在化学酶合成方法中的重要性。
    The synthesis of carbocyclic-ddA, a potent antiviral agent against hepatitis B, relies significantly on (1R,3R)-3-hydroxycyclopentanemethanol as a key intermediate. To effectively produce this intermediate, our study employed a chemoenzymatic approach. The selection of appropriate biocatalysts was based on substrate similarity, leading us to adopt the CrS enoate reductase derived from Thermus scotoductus SA-01. Additionally, we developed an enzymatic system for NADH regeneration, utilising formate dehydrogenase from Candida boidinii. This system facilitated the efficient catalysis of (S)-4-(hydroxymethyl)cyclopent-2-enone, resulting in the formation of (3R)-3-(hydroxymethyl) cyclopentanone. Furthermore, we successfully cloned, expressed, purified, and characterized the CrS enzyme in Escherichia coli. Optimal reaction conditions were determined, revealing that the highest activity occurred at 45 °C and pH 8.0. By employing 5 mM (S)-4-(hydroxymethyl)cyclopent-2-enone, 0.05 mM FMN, 0.2 mM NADH, 10 μM CrS, 40 μM formic acid dehydrogenase, and 40 mM sodium formate, complete conversion was achieved within 45 min at 35 °C and pH 7.0. Subsequently, (1R,3R)-3-hydroxycyclopentanemethanol was obtained through a simple three-step chemical conversion process. This study not only presents an effective method for synthesizing the crucial intermediate but also highlights the importance of biocatalysts and enzymatic systems in chemoenzymatic synthesis approaches.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    甲酸(HCOOH)和二氢(H2)是肠杆菌混合酸发酵的特征产物,随着细胞外pH的降低,H2的产生增加。甲酸酯和乙酰辅酶A是由丙酮酸甲酸裂解酶(PflB)催化的丙酮酸酯的基于自由基和辅酶A依赖性裂解产生的。甲酸也是H2的来源,它与二氧化碳一起通过膜相关的作用产生,胞质定向甲酸脱氢酶(FHL-1)复合物。FHL-1复合物的合成完全依赖于甲酸的细胞质积累。因此,甲酸盐通过FHL-1复合物确定其自身歧化为H2和CO2。细胞质甲酸水平由FocA控制,在细胞质和周质之间双向转运甲酸/甲酸的五聚体通道。FocA的每个原聚体都具有狭窄的疏水孔,中性甲酸可以通过该孔。两个保守的氨基酸残基,组氨酸和苏氨酸,在易位的孔控制方向性的中心。组氨酸残基对于甲酸的pH依赖性流入是必需的。对甲酸盐类似物次磷酸盐和FocA氨基酸变体的研究表明,甲酸流出和流入的机制有所不同。的确,目前的数据表明,取决于细胞外甲酸水平,存在两种独立的摄取机制,两者都可能有助于维持pH稳态。双向甲酸盐/甲酸易位取决于PflB并且流入需要活性FHL-1复合物。本文综述了肠杆菌中甲酸盐和H2生产的偶联。
    Formic acid (HCOOH) and dihydrogen (H2) are characteristic products of enterobacterial mixed-acid fermentation, with H2 generation increasing in conjunction with a decrease in extracellular pH. Formate and acetyl-CoA are generated by radical-based and coenzyme A-dependent cleavage of pyruvate catalysed by pyruvate formate-lyase (PflB). Formate is also the source of H2, which is generated along with carbon dioxide through the action of the membrane-associated, cytoplasmically-oriented formate hydrogenlyase (FHL-1) complex. Synthesis of the FHL-1 complex is completely dependent on the cytoplasmic accumulation of formate. Consequently, formate determines its own disproportionation into H2 and CO2 by the FHL-1 complex. Cytoplasmic formate levels are controlled by FocA, a pentameric channel that translocates formic acid/formate bidirectionally between the cytoplasm and periplasm. Each protomer of FocA has a narrow hydrophobic pore through which neutral formic acid can pass. Two conserved amino acid residues, a histidine and a threonine, at the center of the pore control directionality of translocation. The histidine residue is essential for pH-dependent influx of formic acid. Studies with the formate analogue hypophosphite and amino acid variants of FocA suggest that the mechanisms of formic acid efflux and influx differ. Indeed, current data suggest, depending on extracellular formate levels, two separate uptake mechanisms exist, both likely contributing to maintain pH homeostasis. Bidirectional formate/formic acid translocation is dependent on PflB and influx requires an active FHL-1 complex. This review describes the coupling of formate and H2 production in enterobacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多酶级联催化已成为生产和科学研究中用于化学反应的重要技术。在这项研究中,我们设计了一种四酶集成催化剂,并将其用于催化环手性胺的外消旋反应,其中单胺氧化酶(MAO)催化1-甲基-1,2,3,4-四氢呋喃异喹啉(MTQ)的选择性氧化,亚胺还原酶(IRED)催化1-甲基-3,4-二氢异喹啉(MDQ)的选择性还原,甲酸脱氢酶(FDH)用于辅因子的循环再生,过氧化氢酶(CAT)用于氧化反应的分解。通过聚多巴胺(PDA)包裹的树枝状有机二氧化硅纳米颗粒(DONs)作为载体固定了四种酶,导致两亲核-壳催化剂。亲水PDA外壳确保催化剂在水中的分散,和疏水性DON核心创建具有有机底物的空间限制效应和预浓缩效应的微环境,以增强酶的稳定性和催化效率。核壳结构提高了催化剂的稳定性和可重用性,并根据反应顺序合理安排不同酶的位置,以提高级联催化性能和辅因子回收效率。
    Multi-enzyme cascade catalysis has become an important technique for chemical reactions used in manufacturing and scientific study. In this research, we designed a four-enzyme integrated catalyst and used it to catalyse the deracemization reaction of cyclic chiral amines, where monoamine oxidase (MAO) catalyses the enantioselective oxidation of 1-methyl-1,2,3,4-tetrahydroisoquinoline (MTQ), imine reductase (IRED) catalyses the stereo selective reduction of 1-methyl-3,4-dihydroisoquinoline (MDQ), formate dehydrogenase (FDH) is used for the cyclic regeneration of cofactors, and catalase (CAT) is used for decomposition of oxidative reactions. The four enzymes were immobilized via polydopamine (PDA)-encapsulated dendritic organosilica nanoparticles (DONs) as carriers, resulting in the amphiphilic core-shell catalysts. The hydrophilic PDA shell ensures the dispersion of the catalyst in water, and the hydrophobic DON core creates a microenvironment with the spatial confinement effect of the organic substrate and the preconcentration effect to enhance the stability of the enzymes and the catalytic efficiency. The core-shell structure improves the stability and reusability of the catalyst and rationally arranges the position of different enzymes according to the reaction sequence to improve the cascade catalytic performance and cofactor recovery efficiency.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    依赖钼或钨的甲酸脱氢酶已成为将CO2化学还原为甲酸的重要催化剂,在减缓气候变化方面设想的生物技术应用。Met405在寻常脱硫弧菌甲酸脱氢酶AB(DvFdhAB)的活性位点中的作用仍然难以捉摸。然而,它靠近金属位点以及它在静止和活性形式之间经历的构象变化表明了功能作用。在这项工作中,M405S变体被设计,这使得在没有甲硫氨酸Sδ与金属位点相互作用的情况下,活性位点的几何形状得以揭示,并且Met405在催化中的作用得以探测。该变体在甲酸氧化和CO2还原中都显示出降低的活性,以及对氧失活的敏感性增加。
    Molybdenum- or tungsten-dependent formate dehydrogenases have emerged as significant catalysts for the chemical reduction of CO2 to formate, with biotechnological applications envisaged in climate-change mitigation. The role of Met405 in the active site of Desulfovibrio vulgaris formate dehydrogenase AB (DvFdhAB) has remained elusive. However, its proximity to the metal site and the conformational change that it undergoes between the resting and active forms suggests a functional role. In this work, the M405S variant was engineered, which allowed the active-site geometry in the absence of methionine Sδ interactions with the metal site to be revealed and the role of Met405 in catalysis to be probed. This variant displayed reduced activity in both formate oxidation and CO2 reduction, together with an increased sensitivity to oxygen inactivation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    微藻的光合自养生产受限于碳和光能的有效供应,生产效率低于理论值。以甲醇为代表,C1化合物已通过人工光合作用工业生产,太阳能效率超过10%,但是人造产品的复杂性很弱。这里,基于叶绿体工厂的建设,对绿色微藻莱茵衣藻CC137c进行了修饰,以将甲酸生物转化用于生物质生产。通过筛选叶绿体转运肽的优化组合,cabII-1cTP1融合甲酸脱氢酶对甲酸的转化率显着增强,在维持光反应活性方面表现更好。这项工作提供了一种通过人工-自然混合光合作用从太阳能和二氧化碳中获得生物产品的新途径,其效率可能高于自然。
    The photosynthetic autotrophic production of microalgae is limited by the effective supply of carbon and light energy, and the production efficiency is lower than the theoretical value. Represented by methanol, C1 compounds have been industrially produced by artificial photosynthesis with a solar energy efficiency over 10%, but the complexity of artificial products is weak. Here, based on a construction of chloroplast factory, green microalgae Chlamydomonas reinhardtii CC137c was modified for the bioconversion of formate for biomass production. By screening the optimal combination of chloroplast transport peptides, the cabII-1 cTP1 fusion formate dehydrogenase showed significant enhancement on the conversion of formate with a better performance in the maintenance of light reaction activity. This work provided a new way to obtain bioproducts from solar energy and CO2 with potentially higher-than-nature efficiency by the artificial-natural hybrid photosynthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号