Formate Dehydrogenases

甲酸脱氢酶
  • 文章类型: Journal Article
    NAD(H)依赖性酶在药物和精细化学品的生物合成中起着至关重要的作用,但是NAD(H)辅因子的有限可回收性阻碍了其更广泛的应用。这里,我们报道了机械响应性PEI修饰的Cry3Aa蛋白质晶体的产生及其在多个反应循环中用于NADH回收的用途。为了证明其实用性,已经产生了互补的Cry3Aa蛋白颗粒,其含有用于NADH再生的遗传编码和共固定的甲酸脱氢酶和用于催化NADH依赖性l-叔亮氨酸(l-tert-Leu)生物合成的亮氨酸脱氢酶。当与PEI改性的Cry3Aa晶体结合时,所得反应系统可用于1-tert-Leu的有效生物合成长达21天,NADH周转数提高了10.5倍。
    NAD(H)-dependent enzymes play a crucial role in the biosynthesis of pharmaceuticals and fine chemicals, but the limited recyclability of the NAD(H) cofactor hinders its more general application. Here, we report the generation of mechano-responsive PEI-modified Cry3Aa protein crystals and their use for NADH recycling over multiple reaction cycles. For demonstration of its practical utility, a complementary Cry3Aa protein particle containing genetically encoded and co-immobilized formate dehydrogenase for NADH regeneration and leucine dehydrogenase for catalyzing the NADH-dependent l-tert-leucine (l-tert-Leu) biosynthesis has been produced. When combined with the PEI-modified Cry3Aa crystal, the resultant reaction system could be used for the efficient biosynthesis of l-tert-Leu for up to 21 days with a 10.5-fold improvement in the NADH turnover number.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    依赖钼或钨的甲酸脱氢酶已成为将CO2化学还原为甲酸的重要催化剂,在减缓气候变化方面设想的生物技术应用。Met405在寻常脱硫弧菌甲酸脱氢酶AB(DvFdhAB)的活性位点中的作用仍然难以捉摸。然而,它靠近金属位点以及它在静止和活性形式之间经历的构象变化表明了功能作用。在这项工作中,M405S变体被设计,这使得在没有甲硫氨酸Sδ与金属位点相互作用的情况下,活性位点的几何形状得以揭示,并且Met405在催化中的作用得以探测。该变体在甲酸氧化和CO2还原中都显示出降低的活性,以及对氧失活的敏感性增加。
    Molybdenum- or tungsten-dependent formate dehydrogenases have emerged as significant catalysts for the chemical reduction of CO2 to formate, with biotechnological applications envisaged in climate-change mitigation. The role of Met405 in the active site of Desulfovibrio vulgaris formate dehydrogenase AB (DvFdhAB) has remained elusive. However, its proximity to the metal site and the conformational change that it undergoes between the resting and active forms suggests a functional role. In this work, the M405S variant was engineered, which allowed the active-site geometry in the absence of methionine Sδ interactions with the metal site to be revealed and the role of Met405 in catalysis to be probed. This variant displayed reduced activity in both formate oxidation and CO2 reduction, together with an increased sensitivity to oxygen inactivation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    酶支架是通过控制多酶级联的空间组织和化学计量来提高其催化效率的新兴方法。这项研究介绍了一个新颖的工程SCAffoldingBricks家族,名为SCAB,利用共有四三肽重复序列(CTPR)结构域用于有组织的多酶系统。开发了两个SCAB系统,一种采用可逆共价二硫键的头对尾相互作用,另一个依靠非共价金属驱动的组装通过工程金属协调接口。酶直接与SCAB模块融合,在非还原环境中或通过金属存在触发组装。甲酸脱氢酶(FDH)和L-丙氨酸脱氢酶(AlaDH)的概念验证显示,与游离酶相比,比生产率提高了3.6倍。共价吻合优于金属驱动组件。这种增强可能源于高阶超分子组装和改进的NADH辅因子再生,导致更有效的级联。这项研究强调了蛋白质工程定制支架的潜力,利用超分子空间组织工具,更有效的酶级联反应。
    Enzyme scaffolding is an emerging approach for enhancing the catalytic efficiency of multi-enzymatic cascades by controlling their spatial organization and stoichiometry. This study introduces a novel family of engineered SCAffolding Bricks, named SCABs, utilizing the consensus tetratricopeptide repeat (CTPR) domain for organized multi-enzyme systems. Two SCAB systems are developed, one employing head-to-tail interactions with reversible covalent disulfide bonds, the other relying on non-covalent metal-driven assembly via engineered metal coordinating interfaces. Enzymes are directly fused to SCAB modules, triggering assembly in a non-reducing environment or by metal presence. A proof-of-concept with formate dehydrogenase (FDH) and L-alanine dehydrogenase (AlaDH) shows enhanced specific productivity by 3.6-fold compared to free enzymes, with the covalent stapling outperforming the metal-driven assembly. This enhancement likely stems from higher-order supramolecular assembly and improved NADH cofactor regeneration, resulting in more efficient cascades. This study underscores the potential of protein engineering to tailor scaffolds, leveraging supramolecular spatial-organizing tools, for more efficient enzymatic cascade reactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    甲酸脱氢酶(FDH)对于甲酸和二氧化碳之间的转化至关重要。尽管它很重要,FDH的结构复杂性和酶生产中的困难使得阐明其独特的理化性质具有挑战性。这里,我们纯化了重组甲基杆菌AM1FDH(MeFDH1),并使用低温电子显微镜确定其结构。我们以2.8µ的分辨率解析了异二聚体MeFDH1结构,显示出非规范活性位点和嵌入良好的Fe-S氧化还原链继电器。特别是,钨双钼蝶呤鸟嘌呤二核苷酸活性位点显示具有柔性C末端帽结构域的开放构型,表明酶的结构和动态异质性。
    Formate dehydrogenase (FDH) is critical for the conversion between formate and carbon dioxide. Despite its importance, the structural complexity of FDH and difficulties in the production of the enzyme have made elucidating its unique physicochemical properties challenging. Here, we purified recombinant Methylobacterium extorquens AM1 FDH (MeFDH1) and used cryo-electron microscopy to determine its structure. We resolved a heterodimeric MeFDH1 structure at a resolution of 2.8 Å, showing a noncanonical active site and a well-embedded Fe-S redox chain relay. In particular, the tungsten bis-molybdopterin guanine dinucleotide active site showed an open configuration with a flexible C-terminal cap domain, suggesting structural and dynamic heterogeneity in the enzyme.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    酶已成为许多行业的重要工具。然而,目前,由于缺乏从微生物生产中纯化酶的有效且具有成本效益的方法,因此限制了对其潜力的充分利用。可以解决该问题的一种技术是泡沫分馏。在这项研究中,我们表明,多种天然泡沫稳定蛋白融合为β-内酰胺酶的F-标签,青霉素G酰基转移酶,和甲酸脱氢酶,分别,能够通过泡沫分馏介导酶的发泡和回收。所有三种候选物的催化活性在很大程度上得以保留。在适当的分馏条件下,特别是当使用洗涤缓冲液时,一些F标签还允许目标酶与污染蛋白质几乎完全分离。我们发现,F-Tag与目标酶之间的较大距离对维持催化活性具有积极作用。然而,我们没有发现任何影响F标签性能的特定序列基序或物理参数。使用短螺旋F-Tag获得最佳结果,最初旨在仅用作接头序列。研究结果表明,开发分子标签可以建立无表面活性剂的泡沫分馏以进行酶后处理是一种有前途的方法。关键点:•稳定泡沫的蛋白质介导酶的活性保持泡沫分级分离•作为F-标签的性能不限于特定的结构基序•与来自低泡沫稳定性和泡沫洗涤的未标记蛋白质的分离益处。
    Enzymes have become important tools in many industries. However, the full exploitation of their potential is currently limited by a lack of efficient and cost-effective methods for enzyme purification from microbial production. One technology that could solve this problem is foam fractionation. In this study, we show that diverse natural foam-stabilizing proteins fused as F-Tags to β-lactamase, penicillin G acylase, and formate dehydrogenase, respectively, are able to mediate foaming and recovery of the enzymes by foam fractionation. The catalytic activity of all three candidates is largely preserved. Under appropriate fractionation conditions, especially when a wash buffer is used, some F-Tags also allow nearly complete separation of the target enzyme from a contaminating protein. We found that a larger distance between the F-Tag and the target enzyme has a positive effect on the maintenance of catalytic activity. However, we did not identify any particular sequence motifs or physical parameters that influenced performance as an F-tag. The best results were obtained with a short helical F-Tag, which was originally intended to serve only as a linker sequence. The findings of the study suggest that the development of molecular tags that enable the establishment of surfactant-free foam fractionation for enzyme workup is a promising method. KEY POINTS: • Foam-stabilizing proteins mediate activity-preserving foam fractionation of enzymes • Performance as an F-Tag is not restricted to particular structural motifs • Separation from untagged protein benefits from low foam stability and foam washings.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    活生物体在氧化还原酶的活性位点主要以硒代半胱氨酸的形式使用硒。这里,硒的独特的化学被认为是调节反应机制和提高催化效率的特定酶的方式无法实现的含硫半胱氨酸。然而,尽管硒/硫具有不同的物理化学性质,一些硒蛋白具有功能齐全的含半胱氨酸的同源物,一些生物体根本不使用硒代半胱氨酸.在这次审查中,选择含硒代半胱氨酸的蛋白质将被讨论以展示这两种情况:(i)硒作为蛋白质的生理功能的必需元素,和(ii)硒与硫(含硒或硫的功能性蛋白质)相比没有明显优势。硒在抗氧化防御中的生理作用(维持细胞氧化还原状态/阻碍氧化应激),激素代谢,DNA合成,和修复(保持遗传稳定性)也将被强调,以及硒对人体健康的作用。甲酸脱氢酶,氢化酶,谷胱甘肽过氧化物酶,硫氧还蛋白还原酶,和碘甲状腺原氨酸脱碘酶将在这里的特点。
    Living organisms use selenium mainly in the form of selenocysteine in the active site of oxidoreductases. Here, selenium\'s unique chemistry is believed to modulate the reaction mechanism and enhance the catalytic efficiency of specific enzymes in ways not achievable with a sulfur-containing cysteine. However, despite the fact that selenium/sulfur have different physicochemical properties, several selenoproteins have fully functional cysteine-containing homologues and some organisms do not use selenocysteine at all. In this review, selected selenocysteine-containing proteins will be discussed to showcase both situations: (i) selenium as an obligatory element for the protein\'s physiological function, and (ii) selenium presenting no clear advantage over sulfur (functional proteins with either selenium or sulfur). Selenium\'s physiological roles in antioxidant defence (to maintain cellular redox status/hinder oxidative stress), hormone metabolism, DNA synthesis, and repair (maintain genetic stability) will be also highlighted, as well as selenium\'s role in human health. Formate dehydrogenases, hydrogenases, glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases will be herein featured.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    已经尝试了利用甲酸脱氢酶将CO2还原为甲酸盐。然而,由于电子供体的低能量势能和/或与其他电子受体的电子竞争,转换效率非常低。为了克服如此低的转换效率,我专注于两种不相关的氧化还原酶之间的直接电子转移,以有效还原CO2,并利用[Fe-S]簇的量子力学磁性来开发新的电子路径。利用这个电子路径,我们连接了非相互作用的一氧化碳脱氢酶和甲酸脱氢酶,在先前的研究中构建了合成一氧化碳:甲酸脱氢酶作为单一功能酶复合物。这里,提出了一种理论假设,可以解释基于[Fe-S]团簇的磁性的直接电子转移现象。
    Reduction of CO2 to formate utilizing formate dehydrogenases (FDHs) has been attempted biologically and electrochemically. However, the conversion efficiency is very low due to the low energy potential of electron donors and/or electron competition with other electron acceptors. To overcome such a low conversion efficiency, I focused on a direct electron transfer between two unrelated redox enzymes for the efficient reduction of CO2 and utilized the quantum mechanical magnetic properties of the [Fe-S] ([iron-sulfur]) cluster to develop a novel electron path. Using this electron path, we connected non-interacting carbon monoxide dehydrogenase and FDH, constructing a synthetic carbon monoxide:formate oxidoreductase as a single functional enzyme complex in the previous study. Here, a theoretical hypothesis that can explain the direct electron transfer phenomenon based on the magnetic properties of the [Fe-S] cluster is proposed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    产甲烷菌对于缺氧环境中有机物的完全再矿化至关重要。大多数培养的产甲烷菌都是氢营养型的,使用H2作为电子供体将CO2还原为CH4,但是在不存在H2的情况下,许多也可以使用甲酸盐。甲酸脱氢酶(Fdh)是甲酸氧化所必需的,它转移电子以还原辅酶F420或转移到由异二硫还原酶(Hdr)催化的基于黄素的电子分叉反应,产甲烷的最终反应。此外,使用甲酸的产甲烷菌在其基因组中编码至少两种Fdh的同工型,但是这些不同的同工型如何参与甲烷生成是未知的。使用甲烷球菌,我们对参与产甲烷的两种Fdh同工型进行了生化表征。Fdh1和Fdh2都与Hdr相互作用,催化基于黄素的电子分叉反应,两者都以相似的速率降低了F420。F420还原先于两种酶的基于黄素的电子分叉活性。在Δfdh1突变体背景中,Fdh2活性需要抑制突变。基因组测序显示,这种突变导致特定的钼蝶呤转移酶(moeA)的丢失,允许Fdh2依赖的生长,和蛋白质的金属含量表明,同工型的活性取决于钼或钨。这些数据表明,Fdh的两种同工型在功能上是冗余的,但是它们在体内的活性可能受到基因调控或不同生长条件下金属利用率的限制。这些结果一起扩展了我们对甲酸氧化和Fdh在产甲烷中的作用的理解。
    Methanogens are essential for the complete remineralization of organic matter in anoxic environments. Most cultured methanogens are hydrogenotrophic, using H2 as an electron donor to reduce CO2 to CH4, but in the absence of H2 many can also use formate. Formate dehydrogenase (Fdh) is essential for formate oxidation, where it transfers electrons for the reduction of coenzyme F420 or to a flavin-based electron bifurcating reaction catalyzed by heterodisulfide reductase (Hdr), the terminal reaction of methanogenesis. Furthermore, methanogens that use formate encode at least two isoforms of Fdh in their genomes, but how these different isoforms participate in methanogenesis is unknown. Using Methanococcus maripaludis, we undertook a biochemical characterization of both Fdh isoforms involved in methanogenesis. Both Fdh1 and Fdh2 interacted with Hdr to catalyze the flavin-based electron bifurcating reaction, and both reduced F420 at similar rates. F420 reduction preceded flavin-based electron bifurcation activity for both enzymes. In a Δfdh1 mutant background, a suppressor mutation was required for Fdh2 activity. Genome sequencing revealed that this mutation resulted in the loss of a specific molybdopterin transferase (moeA), allowing for Fdh2-dependent growth, and the metal content of the proteins suggested that isoforms are dependent on either molybdenum or tungsten for activity. These data suggest that both isoforms of Fdh are functionally redundant, but their activities in vivo may be limited by gene regulation or metal availability under different growth conditions. Together these results expand our understanding of formate oxidation and the role of Fdh in methanogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    甲酸脱氢酶催化甲酸的可逆氧化为二氧化碳。这些酶在CO2还原中起重要作用,并且充当烟酰胺辅因子再循环酶。最近,甲酸脱氢酶的CO2还原活性,特别是含金属的甲酸脱氢酶,已进一步探索有效的大气CO2捕获。这里,我们研究了荚膜红杆菌属甲酸脱氢酶的烟酰胺结合位点对NAD+的特异性。NADP+减少。从NAD+特异性野生型RcFDH开始,在NAD+-结合的冷冻-EM结构(PDB-ID:6TG9)的基础上交换关键残基以实现NADP+结合。已经观察到该酶的β-亚基中位置157(Lys157)的赖氨酸对于NAD+的结合是必需的。具有Glu259交换为带正电荷或不带电荷的氨基酸的RcFDH变体对NADP+具有额外的活性。FdsBL279R和FdsBK276A变体也显示出与NADP+的活性。测定所有变体的动力学参数并测试CO2还原活性。在与亚磷酸盐脱氢酶(PTDH)的偶联测定中,使用NADPH作为电子供体,这些变体能够减少CO2,再生NADPH。这使得该酶适用于可以与使用NADPH的其他酶偶联的应用。
    Formate dehydrogenases catalyze the reversible oxidation of formate to carbon dioxide. These enzymes play an important role in CO2 reduction and serve as nicotinamide cofactor recycling enzymes. More recently, the CO2-reducing activity of formate dehydrogenases, especially metal-containing formate dehydrogenases, has been further explored for efficient atmospheric CO2 capture. Here, we investigate the nicotinamide binding site of formate dehydrogenase from Rhodobacter capsulatus for its specificity toward NAD+ vs. NADP+ reduction. Starting from the NAD+-specific wild-type RcFDH, key residues were exchanged to enable NADP+ binding on the basis of the NAD+-bound cryo-EM structure (PDB-ID: 6TG9). It has been observed that the lysine at position 157 (Lys157) in the β-subunit of the enzyme is essential for the binding of NAD+. RcFDH variants that had Glu259 exchanged for either a positively charged or uncharged amino acid had additional activity with NADP+. The FdsBL279R and FdsBK276A variants also showed activity with NADP+. Kinetic parameters for all the variants were determined and tested for activity in CO2 reduction. The variants were able to reduce CO2 using NADPH as an electron donor in a coupled assay with phosphite dehydrogenase (PTDH), which regenerates NADPH. This makes the enzyme suitable for applications where it can be coupled with other enzymes that use NADPH.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:在AlphaFold进行结构预测的帮助下使用结构同源性的策略在寻找由frhAGB编码的嗜热球菌NA1氢化酶的潜在靶标方面非常成功。氢化酶可以与FdhB相互作用以减少辅因子NAD(P)的发现是重要的,因为该酶可以起到提供还原当量的作用。就像产甲烷菌中的F420还原氢化酶使用辅酶F420作为电子载体一样。此外,已确定,通过frhAGB编码的氢化酶和甲酸脱氢酶Fdh3的协同作用,onnurineusNA1可以从H2和CO2中产生甲酸。
    The strategy using structural homology with the help of structure prediction by AlphaFold was very successful in finding potential targets for the frhAGB-encoded hydrogenase of Thermococcus onnurineus NA1. The finding that the hydrogenase can interact with FdhB to reduce the cofactor NAD(P)+ is significant in that the enzyme can function to supply reducing equivalents, just as F420-reducing hydrogenases in methanogens use coenzyme F420 as an electron carrier. Additionally, it was identified that T. onnurineus NA1 could produce formate from H2 and CO2 by the concerted action of frhAGB-encoded hydrogenase and formate dehydrogenase Fdh3.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号