Energy transfer

能量转移
  • 文章类型: Journal Article
    这项工作报告了通过将二维(2D)手性(R-/S-MBA)2PbI4钙钛矿与CsPbBr3量子点(QD)结合来合成手性钙钛矿异质结构薄膜。合成的手性异质结构薄膜表现出明显的圆偏振发光(CPL)特性,即使纯2D手性钙钛矿不能呈现光致发光。这表明量子点激发态的手性源于二维手性钙钛矿。圆偏振分辨瞬态吸收(TA)光谱进一步表明异质结构薄膜的CPL响应源于手性钙钛矿层和量子点之间的能量转移和自旋弛豫的抑制,引起量子点激发态自旋种群的不平衡。此外,光致发光(PL),圆二色性(CD),和这些异质结构薄膜的CPL光谱可以通过改变手性钙钛矿层的厚度和成分来控制,这表明,手性钙钛矿和CsPbBr3量子点之间的阴离子交换可以调整化学组成和光电性能,由于它们之间的低键能差异,并降低量子点层内的应变,以减少辐射复合寿命。这项工作为具有强CPL响应的手性钙钛矿的合成提供了指导,并进一步提供了对CPL起源的见解。
    This work reports the synthesis of chiral perovskite heterostructure films by combining a two-dimensional (2D) chiral (R-/S-MBA)2PbI4 perovskite with CsPbBr3 quantum dots (QDs). The as-synthesized chiral heterostructure films exhibit obvious circularly polarized luminescence (CPL) properties, even though pure 2D chiral perovskite cannot present photoluminescence. It indicates that the chirality of the excited state of the QDs originates from the 2D chiral perovskite. The circular polarization-resolved transient absorption (TA) spectra further demonstrate that the CPL response of heterostructure films originates from the energy transfer between the chiral perovskite layer and QDs layer and the suppression of spin relaxation, which induces the imbalance of the spin population of excited states in QDs layer. In addition, the photoluminescence (PL), circular dichroism (CD), and CPL spectra of these heterostructure films can be controlled by varying the thickness and component of the chiral perovskite layer, which demonstrates that the anion exchange between chiral perovskite and CsPbBr3 QDs can tune the chemical composition and optoelectronic properties due to the low bonding energy difference between them and decrease the strain within the QDs layer to reduce the radiative recombination lifetime. This work provides guidance for the synthesis of chiral perovskites with a strong CPL response and further provides insight into the origination of CPL.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    镧系元素光致发光(PL)发射由于其特别有趣的特性而引起了技术和生物成像应用的广泛关注。例如窄的发射带和非常长的PL寿命。然而,这种发射过程需要从合适的天线进行能量传输的前一步骤。虽然生物相容性应用需要在水性介质中稳定的发光体,大多数基于镧系元素的发射体被水分子猝灭。以前,我们描述了一种小发光体,8-甲氧基-2-氧代-1,2,4,5-四氢环戊二烯[de]喹啉-3-膦酸(PAnt),它能够与Tb(III)和Eu(III)动态协调,与传统的镧系元素隐迹成像剂相比,其可交换行为提高了其在PL寿命成像显微镜(PLIM)中的性能。在这里,我们报告了一项深入的光物理和时间相关的密度泛函理论(TD-DFT)计算研究,该研究揭示了在水中形成的稳定复合物中Eu(III)和Tb(III)的不同敏化机制。了解水性介质中的这种独特行为可以探索生物成像或新型发射材料的不同应用。
    Lanthanide photoluminescence (PL) emission has attracted much attention for technological and bioimaging applications because of its particularly interesting features, such as narrow emission bands and very long PL lifetimes. However, this emission process necessitates a preceding step of energy transfer from suitable antennas. While biocompatible applications require luminophores that are stable in aqueous media, most lanthanide-based emitters are quenched by water molecules. Previously, we described a small luminophore, 8-methoxy-2-oxo-1,2,4,5-tetrahydrocyclopenta[de]quinoline-3-phosphonic acid (PAnt), which is capable of dynamically coordinating with Tb(III) and Eu(III), and its exchangeable behavior improved their performance in PL lifetime imaging microscopy (PLIM) compared with conventional lanthanide cryptate imaging agents. Herein, we report an in-depth photophysical and time-dependent density functional theory (TD-DFT) computational study that reveals different sensitization mechanisms for Eu(III) and Tb(III) in stable complexes formed in water. Understanding this unique behavior in aqueous media enables the exploration of different applications in bioimaging or novel emitting materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    金属卤化物钙钛矿发光二极管(PeLED)具有优异的色纯度,但是以高效率发射深蓝色的设计尚未完全实现,并且由于粒子相互作用而在受限钙钛矿胶体量子点(PeQD)的薄膜中变得更加困难。这里证明了PeQD中的电子耦合和能量转移会引起PeQD膜发射的红移,并因此阻碍了深蓝色发射。通过避免电子耦合和能量转移来实现深蓝色发射,引入有机固溶体中的QD以物理分离膜中的QD。QD的这种物理分离减少了它们之间的相互作用,在发射光谱中产生约7nm的蓝移。此外,使用具有深层最高占据分子轨道(≈6.0eV)的空穴传输有机分子作为有机基质,激基复合物发射的形成被抑制。因此,从PeLED中的QD-in-有机固溶体膜在462nm处获得了前所未有的最大外量子效率6.2%,它满足CIEy<0.06的深蓝色颜色坐标。这项工作提出了一种重要的材料策略,可以加深蓝光发射,而不会将粒径减小到<≈4nm。
    Metal halide perovskite light-emitting diodes (PeLEDs) have exceptional color purity but designs that emit deep-blue color with high efficiency have not been fully achieved and become more difficult in the thin film of confined perovskite colloidal quantum dots (PeQDs) due to particle interaction. Here it is demonstrated that electronic coupling and energy transfer in PeQDs induce redshift in the emission by PeQD film, and consequently hinder deep-blue emission. To achieve deep-blue emission by avoiding electronic coupling and energy transfer, a QD-in-organic solid solution is introduced to physically separate the QDs in the film. This physical separation of QDs reduces the interaction between them yielding a blueshift of ≈7 nm in the emission spectrum. Moreover, using a hole-transporting organic molecule with a deep-lying highest occupied molecular orbital (≈6.0 eV) as the organic matrix, the formation of exciplex emission is suppressed. As a result, an unprecedently high maximum external quantum efficiency of 6.2% at 462 nm from QD-in-organic solid solution film in PeLEDs is achieved, which satisfies the deep-blue color coordinates of CIEy < 0.06. This work suggests an important material strategy to deepen blue emission without reducing the particle size to <≈4 nm.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的是通过有限傅立叶变换技术研究海滩上的谐波强迫波运动。构造的近似解在海岸线上具有对数奇点。它解释了反射和局部扰动。对于所施加的表面压力过量的特定选择,可以进行波浪的捕获。准确解决了波浪撞击水平底部悬崖的情况。该方法总是处理各种底部形状,包括底部在有限间隔内存在额外波纹的情况。也可以处理不渗透性以外的其他底部边界条件。结果可能在几个实际应用中感兴趣,特别是对反射波的评估。平面倾斜海滩的数值应用,呈现抛物线型海滩和架子型海滩,并在海滩上方和附近绘制了流线系统。
    The objective is to study the harmonic forced wave motion over a beach by a finite Fourier transform technique. The constructed approximate solution has a logarithmic singularity at the shoreline. It accounts for reflexion and local perturbations. Trapping of waves may take place for particular choices of the applied surface pressure excess. The case of a wave incident against a cliff with horizontal bottom is solved exactly. The method deals invariably with a variety of bottom shapes, including the case where there is an additional corrugation of the bottom on a finite interval. Other bottom boundary conditions than impermeability can be treated as well. The results may be of interest in several practical applications, in particular the evaluation of the reflected wave. Numerical applications for a plane sloping beach, a parabolic-type beach and a shelf-type beach are presented and the systems of streamlines have been drawn over and in the proximity of the beach.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    包含贵金属和半导体构造块的混合纳米材料提供了可工程的平台,用于实现直接或间接电荷和能量转移,以增强等离子体光转换和光催化作用。在这项工作中,将银纳米颗粒(AgNP)和黄铜矿(CuFeS2)纳米晶体(NC)组合成AgNP@CuFeS2混合结构,其包含嵌入在AgNP核周围的自组装脂质涂层中的NC。在AgNP@CuFeS2杂化结构中,金属和半导体NC都支持准静态共振。为了表征这些共振之间的相互作用及其对潜在电荷和能量转移的影响,AgNP核心和周围的CuFeS2NCs之间的直接界面激励传递通过单粒子线形状分析和支持电磁模拟进行探测。这些研究表明,位于中央AgNP的渐逝场中的CuFeS2NC会引起金属NP线形变宽,当AgNP和CuFeS2NC共振之间的能量匹配使直接能量转移最大化时,该线形达到峰值。在对照实验中,其共振与CuFeS2NC准静态共振表现出较差的能量重叠的AgNPs的尺寸产生的线形变宽要弱得多,证实了AgNP@CuFeS2杂化物中共振能量转移的存在。所研究的混合结构中的金属和半导体结构单元之间的共振耦合提供了一种机制,用于利用中央AgNP的大光学横截面来增强周围半导体NC中反应性电荷载流子的产生,以用于光催化的潜在应用。
    Hybrid nanomaterials containing both noble metal and semiconductor building blocks provide an engineerable platform for realizing direct or indirect charge and energy transfer for enhanced plasmonic photoconversion and photocatalysis. In this work, silver nanoparticles (AgNPs) and chalcopyrite (CuFeS2) nanocrystals (NCs) are combined into a AgNP@CuFeS2 hybrid structure comprising NCs embedded in a self-assembled lipid coating around the AgNP core. In AgNP@CuFeS2 hybrid structures, both metallic and semiconductor NCs support quasistatic resonances. To characterize the interactions between these resonances and their effect on potential charge and energy transfer, direct interfacial excitation transfer between the AgNP core and surrounding CuFeS2 NCs is probed through single particle line shape analysis and supporting electromagnetic simulations. These studies reveal that CuFeS2 NCs localized in the evanescent field of the central AgNP induce a broadening of the metal NP line shape that peaks when an energetic match between the AgNP and CuFeS2 NC resonances maximizes direct energy transfer. Dimers of AgNPs whose resonances exhibit poor energetic overlap with the CuFeS2 NC quasistatic resonance yield much weaker line shape broadening in a control experiment, corroborating the existence of resonant energy transfer in the AgNP@CuFeS2 hybrid. Resonant coupling between the metallic and semiconductor building blocks in the investigated hybrid architecture provides a mechanism for utilizing the large optical cross-section of the central AgNP to enhance the generation of reactive charge carriers in the surrounding semiconductor NCs for potential applications in photocatalysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    使用飞秒差分光谱法,在室温下研究了紫色细菌RhodospirillumrubrumG9的无胡萝卜素菌株的反应中心(RC)的激发能量转移。QY的激发和探测,RC的Qx和Soret吸收带通过持续时间为25-30fs的脉冲进行。对ΔA(亮-暗)动力学进行建模,可以估算激发能量转换各个阶段的特征时间。表明,RC中下坡能量流的动力学既由每个辅因子中的内部能量转换Soret→Qx→Qy决定,也由能量转移H*→B*→P*决定(H-细菌叶绿素,B-细菌叶绿素a,P-细菌叶绿素a二聚体)在辅因子之间。辅因子的较高激发能级(Soret和Qx)之间的能量转移加速了其到达P的较低激子能级,从电荷分离开始的地方。事实证明,所有转换和能量转移过程都发生在40-160fs内:转换Soret→Qx发生在40-50fs内,转换Qx→Qy发生在100-140fs中,传递H*→B*的时间常数为80-120fs,并且转移B*→P*具有130-160fs的时间常数。上激发能级之间的能量转移速率接近Qy能级之间的转移速率。
    Using femtosecond differential spectroscopy, excitation energy transfer in reaction centers (RCs) of the carotenoidless strain of purple bacteria Rhodospirillum rubrum G9 was studied at room temperature. Excitation and probing of the Qy, Qx and Soret absorption bands of the RCs were carried out by pulses with duration of 25-30 fs. Modeling of ΔA (light - dark) kinetics made it possible to estimate the characteristic time of various stages of excitation energy transformation. It is shown that the dynamics of the downhill energy flow in the RCs is determined both by the internal energy conversion Soret→ Qx → Qy in each cofactor and by the energy transfer H* → B* → P* (H - bacteriopheophytin, B - bacteriochlorophyll a, P - bacteriochlorophyll a dimer) between cofactors. The transfer of energy between the upper excited levels (Soret and Qx) of the cofactors accelerates its arrival to the lower exciton level of the P, from where charge separation begins. It turned out that all conversion and energy transfer processes occur within 40-160 fs: the conversion Soret → Qx occurs in 40-50 fs, the conversion Qx → Qy occurs in 100-140 fs, the transfer H* → B* has a time constant of 80-120 fs, and the transfer B* → P* has a time constant of 130-160 fs. The rate of energy transfer between the upper excited levels is close to the rate of transfer between Qy levels.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    活性层的垂直相分布在平衡激子解离和电荷传输以实现有效的聚合物太阳能电池(PSC)中起着至关重要的作用。逐层(LbL)PSC通常通过使用顺序旋涂方法从具有不同溶剂和溶剂添加剂的供体和受体溶液制备。在LbLPSC中预期增强的激子解离,在相对纯的供体或受体层中具有有效的电荷转移。在这项工作中,以PM6为供体,PY-DT为受体,制备了一系列LbL全聚合物太阳能电池(APSC),和三重态材料m-Ir(CPmPB)3被有意地结合到PY-DT层中,以延长活性层的激子寿命。通过在PY-DT层中加入0.3wt%的m-Ir(CPmPB)3,LbLAPSCs的功率转换效率(PCE)从17.32%提高到18.24%,受益于同时增强的25.17mAcm-2的短路电流密度(JSC)和74.70%的填充因子(FF)。PCE的增强归因于m-Ir(CPmPB)3向PM6和PY-DT的有效能量转移,导致活性层中激子寿命延长和激子扩散距离增加。从m-Ir(CPmPB)3到PM6和PY-DT层的有效能量转移可以通过PM6m-Ir(CPmPB)3和PY-DT薄膜中PM6和PY-DT的光致发光(PL)强度增加和PL寿命延长来证实。这项研究表明,作为固体添加剂的三重态材料在通过延长活性层中的激子寿命来制造有效的LbLAPSCs方面具有巨大的潜力。
    The vertical phase distribution of active layers plays a vital role in balancing exciton dissociation and charge transport for achieving efficient polymer solar cells (PSCs). The layer-by-layer (LbL) PSCs are commonly prepared by using sequential spin-coating method from donor and acceptor solutions with distinct solvents and solvent additives. The enhanced exciton dissociation is expected in the LbL PSCs with efficient charge transport in the relatively neat donor or acceptor layers. In this work, a series of LbL all-polymer solar cells (APSCs) were fabricated with PM6 as donor and PY-DT as acceptor, and triplet material m-Ir(CPmPB)3 is deliberately incorporated into PY-DT layer to prolong exciton lifetimes of active layers. The power conversion efficiency (PCE) of LbL APSCs is improved to 18.24% from 17.32% by incorporating 0.3 wt% m-Ir(CPmPB)3 in PY-DT layer, benefiting from the simultaneously enhanced short-circuit current density (JSC) of 25.17 mA cm-2 and fill factor (FF) of 74.70%. The enhancement of PCE is attributed to the efficient energy transfer of m-Ir(CPmPB)3 to PM6 and PY-DT, resulting in the prolonged exciton lifetime in the active layer and the increased exciton diffusion distance. The efficient energy transfer from m-Ir(CPmPB)3 to PM6 and PY-DT layer can be confirmed by the increased photoluminescence (PL) intensity and the prolonged PL lifetime of PM6 and PY-DT in PM6 + m-Ir(CPmPB)3 and PY-DT + m-Ir(CPmPB)3 films. This study indicates that the triplet material as solid additive has great potential in fabricating efficient LbL APSCs by prolonging exciton lifetimes in active layers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    超快光谱技术对于研究光合集光复合物中的激发能量转移(EET)至关重要。在本文中,我们模拟了紫色细菌的光捕获复合物2(LH2)的B850波段的泵浦-探针光谱,运动方程法和光学响应函数法。基态漂白剂,受激发射,详细分析了泵浦-探针光谱的激发态吸收成分。还模拟了激光脉冲诱导的种群动力学,以帮助了解泵浦探针光谱和EET过程的主要特征。表明,激发能量弛豫是具有多个时间尺度的超快过程。泵浦探测光谱的前40fs由k=±1状态到k=0和更高能量状态的弛豫所主导。在200fs左右的较长时间尺度上的动力学反映了较高能量状态到k=0状态的弛豫。
    Ultrafast spectroscopic techniques have been vital in studying excitation energy transfer (EET) in photosynthetic light harvesting complexes. In this paper, we simulate the pump-probe spectra of the B850 band of the light harvesting complex 2 (LH2) of purple bacteria, by using the hierarchical equation of motion method and the optical response function approach. The ground state bleach, stimulated emission, and excited state absorption components of the pump-probe spectra are analyzed in detail. The laser pulse-induced population dynamics are also simulated to help understand the main features of the pump-probe spectra and the EET process. It is shown that the excitation energy relaxation is an ultrafast process with multiple time scales. The first 40 fs of the pump-probe spectra is dominated by the relaxation of the k = ±1 states to both the k = 0 and higher energy states. Dynamics on a longer time scale around 200 fs reflects the relaxation of higher energy states to the k = 0 state.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们构建和分析不连通性图,以提供蛋白质振动能量景观的第一个图形表示,在这项研究中β2AR,G蛋白偶联受体(GPCR),处于活动状态和非活动状态。这些图表,表示每个残基的相对自由能以及它们之间能量转移的最小自由能垒,揭示重要的成分,调节能量流动的结构和动态特性。脯氨酸和甘氨酸,这有助于GPCR的可塑性和功能,被确定为沿着骨架的能量传输的瓶颈,通过附近的非共价接触出现了能量传输的替代途径,在此处介绍的首次通过时间(FPT)分布分析中也可以看到。发现β2AR的非活动状态和活动状态的不连通性图和FPT分布之间存在惊人的差异,其中激活时会发生结构和动态变化,有助于变构调节。
    We construct and analyze disconnectivity graphs to provide the first graphical representation of the vibrational energy landscape of a protein, in this study β2AR, a G-protein coupled receptor (GPCR), in active and inactive states. The graphs, which indicate the relative free energy of each residue and the minimum free energy barriers for energy transfer between them, reveal important composition, structural and dynamic properties that mediate the flow of energy. Prolines and glycines, which contribute to GPCR plasticity and function, are identified as bottlenecks to energy transport along the backbone from which alternative pathways for energy transport via nearby noncovalent contacts emerge, seen also in the analysis of first passage time (FPT) distributions presented here. Striking differences between the disconnectivity graphs and FPT distributions for the inactive and active states of β2AR are found where structural and dynamic changes occur upon activation, contributing to allosteric regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    化学发光共振能量转移(CRET)效率可以通过将CRET供体和受体限制在纳米级空间中来提高。然而,这种提高的效率通常受到在这种受限环境中CRET供体和受体随机分布所产生的不确定性的影响.在这项研究中,通过对具有聚集诱导发射(AIE)特征的碳点(CD)的表面活性剂改性,产生了一种新型的受限纳米空间。疏水性CRET供体可以有效地限制在该纳米空间内。CRET供体和受体之间的距离可以通过锚定AIE-CD作为CRET受体来控制,显著提高了CRET效率。此外,这种基于AIE-CD的CRET系统已成功应用于雨水中过氧化氢(H2O2)的检测,展示其实际应用的潜力。
    Chemiluminescence resonance energy transfer (CRET) efficiency can be enhanced by confining CRET donors and acceptors within nanoscale spaces. However, this enhanced efficiency is often affected by uncertainties stemming from the random distribution of CRET donors and acceptors in such confined environments. In this study, a novel confined nanospace was created through the surfactant modification of carbon dots (CDs) exhibiting aggregation-induced emission (AIE) characteristics. Hydrophobic CRET donors could be effectively confined within this nanospace. The distance between the CRET donors and acceptors could be controlled by anchoring the AIE-CDs as the CRET acceptors, resulting in significantly improved CRET efficiency. Furthermore, this AIE-CDs-based CRET system was successfully applied to the detection of hydrogen peroxide (H2O2) in rainwater, showcasing its potential for practical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号