sodium‐ion batteries

钠离子电池
  • 文章类型: Journal Article
    钠离子电池的层状氧化物在电极/电解质界面上遭受严重的副反应,导致容量快速下降。尽管曲面重建策略被广泛用于解决上述问题,低成本的湿化学法的利用对水分敏感的钠基氧化物材料具有极大的挑战性。这里,提出了溶剂化调整策略,以克服NaNi1/3Mn1/3Fe1/3O2在水性溶液中的劣化,并进行表面重建。当通过阳离子的溶剂化结构捕获水分子时,这里是Li+,层状氧化物在水基溶剂中的结构崩溃和降解被大大减轻。此外,Li(H2O)3EA+促进有利可图的Li+/Na+交换,以建立一个强大的表面,这阻碍了电解质的分解和循环时的结构演变。因此,锂增强材料的寿命延长到原始材料的三倍。这项工作代表了在理解在高性能钠层状氧化物阴极的水基溶液中进行的表面重建方面迈出的一步。
    Layered oxides of sodium-ion batteries suffer from severe side reactions on the electrode/electrolyte interface, leading to fast capacity degradation. Although surface reconstruction strategies are widely used to solve the above issues, the utilization of the low-cost wet chemical method is extremely challenging for moisture-sensitive Na-based oxide materials. Here, the solvation tuning strategy is proposed to overcome the deterioration of NaNi1/3Mn1/3Fe1/3O2 in water-based solution and conduct the surface reconstruction. When capturing the water molecules by the solvation structure of cations, here is Li+, the structural collapse and degradation of layered oxides in water-based solvents are greatly mitigated. Furthermore, Li(H2O)3EA+ promotes the profitable Li+/Na+ exchange to build a robust surface, which hampers the decomposition of electrolytes and the structural evolution upon cycling. Accordingly, the lifespan of Li-reinforced materials is prolonged to three times that of the pristine one. This work represents a step forward in understanding the surface reconstruction operated in a water-based solution for high-performance sodium layered oxide cathodes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    从基础研究到工业过程,电池储能系统在信息化建设中发挥了巨大作用,移动性,现代人类社会的智能化。一些潜在的系统,如Li,Na,K,Mg,Zn,和Al二次电池在保持社会进步和可持续发展方面备受关注。作为电池的组成部分之一,电解质在电池技术的升级和突破中发挥着重要作用。由于室温离子液体(IL)具有高电导率,不易燃性,非波动性,热稳定性高,和宽电化学窗口,它们已广泛应用于各种电池系统,并在提高电池稳定性方面显示出巨大潜力,动力学性能,能量密度,使用寿命,和安全。因此,现在是总结这些进展的合适时机。在这次审查中,各种IL的组成和分类及其在各种金属离子电池中作为电解质的最新应用(Li,Na,K,Mg,Zn,Al)概述以增强电池性能。
    From basic research to industry process, battery energy storage systems have played a great role in the informatization, mobility, and intellectualization of modern human society. Some potential systems such as Li, Na, K, Mg, Zn, and Al secondary batteries have attracted much attention to maintain social progress and sustainable development. As one of the components in batteries, electrolytes play an important role in the upgrade and breakthrough of battery technology. Since room-temperature ionic liquids (ILs) feature high conductivity, nonflammability, nonvolatility, high thermal stability, and wide electrochemical window, they have been widely applied in various battery systems and show great potential in improving battery stability, kinetics performance, energy density, service life, and safety. Thus, it is a right time to summarize these progresses. In this review, the composition and classification of various ILs and their recent applications as electrolytes in diverse metal-ion batteries (Li, Na, K, Mg, Zn, Al) are outlined to enhance the battery performances.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    正极材料中Na的电化学不可逆性和缓慢的迁移率导致钠离子电池的循环稳定性和倍率性能差。在这里,设计了一种将Mg离子引入Mn基隧道结构阴极材料的结合位点的新策略。在该阴极中实现了高度可逆的电化学反应和相变。所得的Na0.44Mn0.95Mg0.05O2与Mg2在铰接的Mn-O5方形金字塔中表现出良好的循环稳定性和倍率能力。在2C的电流密度下,在800次循环后保留了67%的初始放电容量(20C时为70%),比未掺杂的Na0.44MnO2有很大改善。改善归因于Mg掺杂后增强的Na扩散动力学和降低的去氧化能。基于同步加速器的X射线技术证明了高度可逆的电荷补偿和结构演化。Mn平均电子数的差分电荷密度和原子总体分析表明,在费米能级附近的Mn3d轨道中,Na0.44Mn0.95Mg0.05O2比Na0.44MnO2中的电子丰度更高,导致Mn离子的氧化还原参与更高。
    Electrochemical irreversibility and sluggish mobility of Na+ in the cathode materials result in poor cycle stability and rate capability for sodium-ion batteries. Herein, a new strategy of introducing Mg ions into the hinging sites of Mn-based tunnel-structured cathode material is designed. Highly reversible electrochemical reaction and phase transition in this cathode are realized. The resulted Na0.44Mn0.95Mg0.05O2 with Mg2+ in the hinging Mn-O5 square pyramidal exhibits promising cycle stability and rate capability. At a current density of 2 C, 67% of the initial discharge capacity is retained after 800 cycles (70% at 20 C), much improved than the undoped Na0.44MnO2. The improvement is attribute to the enhanced Na+ diffusion kinetics and the lowered desodiation energy after Mg doping. Highly reversible charge compensation and structure evolution are proved by synchrotron-based X-ray techniques. Differential charge density and atom population analysis of the average electron number of Mn indicate that Na0.44Mn0.95Mg0.05O2 is more electron-abundant in Mn 3d orbits near the Fermi level than that in Na0.44MnO2, leading to higher redox participation of Mn ions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    溶剂化钠离子在石墨中的电化学嵌入/脱嵌是一个高度可逆的过程,但导致大,不希望的电极膨胀/收缩(“呼吸”)。在这里,研究了两种减轻电极膨胀的策略。从标准配置(-)钠|二甘醇二甲醚(2G)电解质|石墨(聚偏二氟乙烯(PVDF)粘合剂)(+)开始,首先用由羧甲基纤维素(CMC)的钠盐制成的粘合剂代替PVDF粘合剂。第二,将乙二胺(EN)作为共溶剂添加到电解质溶液中。通过电化学膨胀法(ECD)在原位(操作)跟踪电极呼吸。发现用CMC代替PVDF仅在减少初始酸化期间的电极膨胀方面有效。骑自行车时,两种粘合剂的电极呼吸是相当的。更有效的是添加EN。向二甘醇二甲醚电解质中添加10v/vEN会大大降低初始酸化过程中的电极膨胀(EN为100%,而没有EN为175%)以及循环过程中的呼吸。对ECD信号的更详细的分析表明,溶剂共嵌入会暂时导致石墨晶格的柱撑,并且向2G中添加EN会导致钠储存机制的变化。
    The electrochemical intercalation/deintercalation of solvated sodium ions into graphite is a highly reversible process, but leads to large, undesired electrode expansion/shrinkage (\"breathing\"). Herein, two strategies to mitigate the electrode expansion are studied. Starting with the standard configuration (-) sodium | diglyme (2G) electrolyte | graphite (poly(vinylidene difluoride) (PVDF) binder) (+), the PVDF binder is first replaced with a binder made of the sodium salt of carboxymethyl cellulose (CMC). Second, ethylenediamine (EN) is added to the electrolyte solution as a co-solvent. The electrode breathing is followed in situ (operando) through electrochemical dilatometry (ECD). It is found that replacing PVDF with CMC is only effective in reducing the electrode expansion during initial sodiation. During cycling, the electrode breathing for both binders is comparable. Much more effective is the addition of EN. The addition of 10 v/v EN to the diglyme electrolyte strongly reduces the electrode expansion during the initial sodiation (+100% with EN versus +175% without EN) as well as the breathing during cycling. A more detailed analysis of the ECD signals reveals that solvent co-intercalation temporarily leads to pillaring of the graphite lattice and that the addition of EN to 2G leads to a change in the sodium storage mechanism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    锗(Ge)基材料由于其高理论比容量而被认为是钠离子电池的潜在阳极材料。然而,Ge基材料的导电性和Na+扩散性较差,导致离子/电子传输受阻,钠储存效率不足,导致反应动力学迟缓。为了本质上最大化Ge的钠储存能力,开发了氮掺杂碳包覆的Cu3Ge/Ge异质结构材料(Cu3Ge/Ge@N-C),用于增强钠存储。Cu3Ge/Ge@N-C的豆荚状结构暴露了大量的活性表面以缩短离子传输途径,同时碳壳的均匀封装改善了电子传输。导致反应动力学增强。理论计算表明,Cu3Ge/Ge异质结构可以提供适当的电子传导并降低Na扩散势垒,这进一步促进了Ge的合金化反应,并将其钠储存能力提高到接近其理论值。此外,氮掺杂碳在Cu3Ge/Ge异质结构材料上的均匀封装有效地减轻了其体积膨胀并防止了其分解,进一步确保其结构的完整性,在循环。得益于这些独特的优势,制备的Cu3Ge/Ge@N-C电极显示出令人钦佩的放电容量,出色的倍率能力和延长的循环寿命(178mAhg-1在4000次循环后的4.0Ag-1)。
    Germanium (Ge)-based materials have been considered as potential anode materials for sodium-ion batteries owing to their high theoretical specific capacity. However, the poor conductivity and Na+ diffusivity of Ge-based materials result in retardant ion/electron transportation and insufficient sodium storage efficiency, leading to sluggish reaction kinetics. To intrinsically maximize the sodium storage capability of Ge, the nitrogen doped carbon-coated Cu3Ge/Ge heterostructure material (Cu3Ge/Ge@N-C) is developed for enhanced sodium storage. The pod-like structure of Cu3Ge/Ge@N-C exposes numerous active surface to shorten ion transportation pathway while the uniform encapsulation of carbon shell improves the electron transportation, leading to enhanced reaction kinetics. Theoretical calculation reveals that Cu3Ge/Ge heterostructure can offer decent electron conduction and lower the Na+ diffusion barrier, which further promotes Ge alloying reaction and improves its sodium storage capability close to its theoretical value. In addition, the uniform encapsulation of nitrogen-doped carbon on Cu3Ge/Ge heterostructure material efficiently alleviates its volume expansion and prevents its decomposition, further ensuring its structural integrity upon cycling. Attributed to these unique superiorities, the as-prepared Cu3Ge/Ge@N-C electrode demonstrates admirable discharge capacity, outstanding rate capability and prolonged cycle lifespan (178 mAh g-1 at 4.0 A g-1 after 4000 cycles).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    铁/锰基层状过渡金属氧化物由于其丰富的资源和较高的理论比容量,已成为钠离子电池(SIB)的潜在阴极,然而,他们仍然遭受容量迅速下降的困扰。在这里,开发了一种双重策略,通过铜(Cu)掺杂和纳米工程来提高基于Fe/Mn的层状氧化物阴极的Na存储性能。通过静电纺丝合成的P2-Na0.76Cu0.22Fe0.30Mn0.48O2阴极材料表现出由尺寸为50-150nm的纳米晶粒组装的珍珠项链状分层纳米结构。Cu掺杂和纳米技术的协同作用使得高Na+系数和低离子迁移能垒,以及在反复插入/提取钠时高度可逆的结构演变和Cu/Fe/Mn化合价变化;因此,P2-Na0.76Cu0.22Fe0.30Mn0.48O2纳米项链具有出色的倍率性能(0.1C时为125.4mAhg-1,20C时为56.5mAhg-1)和出色的循环稳定性(300次循环后约79%的容量保持率)。此外,在由定制的纳米项链阴极和硬碳阳极构造的原型软包装Na离子全电池中,证明了有希望的能量密度为177.4Whkg-1。这项工作标志着Fe/Mn基层状氧化物作为SIBs高性能阴极的开发迈出了一步。
    Iron/manganese-based layered transition metal oxides have risen to prominence as prospective cathodes for sodium-ion batteries (SIBs) owing to their abundant resources and high theoretical specific capacities, yet they still suffer from rapid capacity fading. Herein, a dual-strategy is developed to boost the Na-storage performance of the Fe/Mn-based layered oxide cathode by copper (Cu) doping and nanoengineering. The P2-Na0.76Cu0.22Fe0.30Mn0.48O2 cathode material synthesized by electrospinning exhibits the pearl necklace-like hierarchical nanostructures assembled by nanograins with sizes of 50-150 nm. The synergistic effects of Cu doping and nanotechnology enable high Na+ coefficients and low ionic migration energy barrier, as well as highly reversible structure evolution and Cu/Fe/Mn valence variation upon repeated sodium insertion/extraction; thus, the P2-Na0.76Cu0.22Fe0.30Mn0.48O2 nano-necklaces yield fabulous rate capability (125.4 mA h g-1 at 0.1 C with 56.5 mA h g-1 at 20 C) and excellent cyclic stability (≈79% capacity retention after 300 cycles). Additionally, a promising energy density of 177.4 Wh kg-1 is demonstrated in a prototype soft-package Na-ion full battery constructed by the tailored nano-necklaces cathode and hard carbon anode. This work symbolizes a step forward in the development of Fe/Mn-based layered oxides as high-performance cathodes for SIBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    金属硫化物由于其高容量而被深入研究用于有效的钠离子储存。然而,反应途径和相变背后的机制尚不清楚。此外,设计的纳米结构对电化学行为的影响鲜有报道。在这里,通过简单的合成方法制备了绣球花状CuS微球,并显示出显着提高的速率和循环性能。与传统的嵌入和转化反应不同,在原位高分辨率同步辐射衍射分析的帮助下,证明和阐明了一个不可逆的非晶化过程,和透射电子显微镜。初级CuS纳米片的取向(006)晶面生长为Na离子插层提供了更多的通道和吸附位点,由此产生的低超电势有利于无定形Cu-S簇,这与密度泛函理论计算是一致的。这项研究可以为原子级相变与宏观纳米结构设计之间的相关性提供新的见解,并为电极材料的设计开辟了新的原理。
    Metal sulfides have been intensively investigated for efficient sodium-ion storage due to their high capacity. However, the mechanisms behind the reaction pathways and phase transformation are still unclear. Moreover, the effects of designed nanostructure on the electrochemical behaviors are rarely reported. Herein, a hydrangea-like CuS microsphere is prepared via a facile synthetic method and displays significantly enhanced rate and cycle performance. Unlike the traditional intercalation and conversion reactions, an irreversible amorphization process is evidenced and elucidated with the help of in situ high-resolution synchrotron radiation diffraction analyses, and transmission electron microscopy. The oriented (006) crystal plane growth of the primary CuS nanosheets provide more channels and adsorption sites for Na ions intercalation and the resultant low overpotential is beneficial for the amorphous Cu-S cluster, which is consistent with the density functional theory calculation. This study can offer new insights into the correlation between the atomic-scale phase transformation and macro-scale nanostructure design and open a new principle for the electrode materials\' design.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    3D电极设计通常选择多种优势,然而,活性材料的不稳定性/脱离导致结构的粉碎和降解,最终循环稳定性差。这里,一个双重保护,高度可压缩,提出了钠离子电池的独立式阳极,其中3D碳纳米管(CNT)海绵用均匀分散的CoSe2纳米颗粒(NP)装饰,这些纳米颗粒在碳外涂层(CNT/CoSe2/C)下受到保护。3DCNT海绵为高质量负载提供足够的空间,同时在NP之间提供高机械强度和更快的传导途径。外部无定形碳外涂层通过避免CoSe2与电解质的直接接触来控制固体电解质界面膜的形成,适应大的体积变化,并最终增强电池的整体导电性,并有助于将电子传输到外部电路。此外,该杂化物可以致密化11倍,而不会影响其微观结构,从而导致17.4mgcm-2的超高面积质量负载和7.03mAhcm-2的面积容量以及531mAhg-1的高重量容量在100mAg-1。因此,紧凑型和智能设备可以通过这种用于重型商业应用的新电极设计来实现。
    3D electrode design is normally opted for multiple advantages, however, instability/detachment of active material causes the pulverization and degradation of the structure, and ultimately poor cyclic stability. Here, a dually protected, highly compressible, and freestanding anode is presented for sodium-ion batteries, where 3D carbon nanotube (CNT) sponge is decorated with homogeneously dispersed CoSe2 nanoparticles (NPs) which are protected under carbon overcoat (CNT/CoSe2/C). The 3D CNT sponge delivers enough space for high mass loading while providing high mechanical strength and faster conduction pathway among the NPs. The outer amorphous carbon overcoat controls the formation of solid electrolyte interphase film by avoiding direct contact of CoSe2 with electrolyte, accommodates large volume changes, and ultimately enhances the overall conductivity of cell and assists in transmitting electron to an external circuit. Moreover, the hybrid can be densified up to 11-fold without affecting its microstructure that results in ultrahigh areal mass loading of 17.4 mg cm-2 and an areal capacity of 7.03 mAh cm-2 along with a high gravimetric capacity of 531 mAh g-1 at 100 mA g-1. Thus, compact and smart devices can be realized by this new electrode design for heavy-duty commercial applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    在本文中,报道了通过静电纺丝精细嵌入多孔N掺杂碳纳米纤维(表示为Na2FePO4F@C)中的超小Na2FePO4F纳米颗粒(≈3.8nm)的合成。制备的Na2FePO4F@C纤维膜紧密粘附在铝箔上,具有很大的柔韧性,可直接用作钠离子电池的无粘合剂阴极,表现出令人钦佩的电化学性能与高可逆容量(117.8mAhg-1在0.1C),出色的倍率性能(20C时为46.4mAhg-1),和前所未有的高循环稳定性(2000次循环后85%的容量保持率)。通过循环伏安法的联合研究,探索了反应动力学和机理,异位结构/价态分析,和第一性原理计算,揭示Na2FeIIPO4F的高度可逆相变↔NaFeIIIPO4F,低能势垒的促进Na+扩散动力学,以及快速电荷存储所需的伪电容行为。袋式Na离子全电池还采用Na2FePO4F@C纳米纤维阴极和碳纳米纤维阳极组装,在200次循环中表现出135.8Whkg-1的有希望的能量密度和84.5%的高容量保留。封装在互连碳纳米纤维中的超细活性材料的独特网络结构为增强电化学反应性提供了理想的平台,电子/离子透射率,和Na存储电极的结构稳定性。
    In this paper, the synthesis of ultrasmall Na2FePO4F nanoparticles (≈3.8 nm) delicately embedded in porous N-doped carbon nanofibers (denoted as Na2FePO4F@C) by electrospinning is reported. The as-prepared Na2FePO4F@C fiber film tightly adherent on aluminum foil features great flexibility and is directly used as binder-free cathode for sodium-ion batteries, exhibiting admirable electrochemical performance with high reversible capacity (117.8 mAh g-1 at 0.1 C), outstanding rate capability (46.4 mAh g-1 at 20 C), and unprecedentedly high cyclic stability (85% capacity retention after 2000 cycles). The reaction kinetics and mechanism are explored by a combination study of cyclic voltammetry, ex situ structure/valence analyses, and first-principles computations, revealing the highly reversible phase transformation of Na2FeIIPO4F ↔ NaFeIIIPO4F, the facilitated Na+ diffusion dynamics with low energy barriers, and the desirable pseudocapacitive behavior for fast charge storage. Pouch-type Na-ion full batteries are also assembled employing the Na2FePO4F@C nanofibers cathode and the carbon nanofibers anode, demonstrating a promising energy density of 135.8 Wh kg-1 and a high capacity retention of 84.5% over 200 cycles. The distinctive network architecture of ultrafine active materials encapsulated into interlinked carbon nanofibers offers an ideal platform for enhancing the electrochemical reactivity, electronic/ionic transmittability, and structural stability of Na-storage electrodes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    对快速充电的可充电电池的需求不断增加,长时间骑自行车,安全性高,和低成本的新型储能系统。在这里,开发了由封装在钛酸钠纳米线上的MoS2偶联的碳纳米片组成的异质结构,并将其证明为钠离子电池(SIB)的先进阳极。由于1D钛酸钠(NTO)纳米线的超稳定衬底的协同作用,2DMoS2纳米片以及2D导电碳基质的高容量促进剂,所得的1D/2D-2D混合表现出优异的高速率容量和超持久的循环能力,在200mAg-1时提供高达425.5mAhg-1的稳定容量。即使在80s内的超快充电/放电过程中,16000次循环后,容量可以保持在201mAhg-1,每个循环只有0.0012%的容量损失,NTO基混合复合材料的最佳高倍率容量和循环能力之一。本工作重点介绍了具有稳定衬底和高容量电极的分层纳米体系结构的设计方案,用于下一代能量存储应用。
    There is an ever-increasing demand for rechargeable batteries with fast charging, long cycling, high safety, and low cost in new energy storage systems. Herein, a heterogeneous architecture composed of MoS2-coupled carbon nanosheets encapsulated on sodium titanate nanowires is developed and demonstrated as an advanced anode for sodium-ion batteries (SIBs). Owing to the synergistic effects of ultrastable substrate of 1D sodium titanate (NTO) nanowires, high-capacity promoter of 2D MoS2 nanosheets as well as the 2D conductive carbon matrix, the resulting 1D/2D-2D hybrid demonstrates excellent high-rate capacity and super-durable cyclability, delivering a stable capacity of up to 425.5 mAh g-1 at 200 mA g-1. Even at an ultrafast charging/discharging process within 80 s, the capacity can be maintained at 201 mAh g-1 after 16 000 cycles with only 0.0012% capacity loss per cycle, one of the best high-rate capacities and cyclabilities for NTO-based hybrid composites. The present work highlights the designing protocol of hierarchical nanoarchitectures with stable substrate and high-capacity electrodes for next-generation energy storage applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号