single-particle analysis

  • 文章类型: Journal Article
    单粒子低温电子显微镜(cryo-EM)已成为一种基本的结构确定技术,最近的硬件发展使达到原子分辨率成为可能。单个原子,包括氢原子,可以解决。在这项研究中,我们使用核黄素生物合成倒数第二步中涉及的酶作为测试样本,对最近安装的显微镜进行基准测试,并确定其他蛋白质复合物是否可以达到1.5或更高的分辨率,到目前为止,只有铁载体铁蛋白才能实现。使用最先进的显微镜和检测器硬件以及最新的软件技术来克服显微镜和样品的限制,从48小时的显微镜观察中获得了Aquifexaeolicuslumazine合酶(AaLS)的1.42的图。除了参与AaLS功能的水分子和配体,我们可以观察到50%的氢原子的正密度。通过Ewald球体校正可以实现分辨率的小幅提高,预计该直径的分子将分辨率限制在〜1.5。我们的研究证实,其他蛋白质复合物可以解决近原子分辨率。未来在标本制备和蛋白质复合物稳定方面的改进可能会使更灵活的大分子达到这种分辨率水平,并应成为该领域研究的重点。
    Single-particle cryo-electron microscopy (cryo-EM) has become an essential structural determination technique with recent hardware developments making it possible to reach atomic resolution, at which individual atoms, including hydrogen atoms, can be resolved. In this study, we used the enzyme involved in the penultimate step of riboflavin biosynthesis as a test specimen to benchmark a recently installed microscope and determine if other protein complexes could reach a resolution of 1.5 Å or better, which so far has only been achieved for the iron carrier ferritin. Using state-of-the-art microscope and detector hardware as well as the latest software techniques to overcome microscope and sample limitations, a 1.42 Å map of Aquifex aeolicus lumazine synthase (AaLS) was obtained from a 48 h microscope session. In addition to water molecules and ligands involved in the function of AaLS, we can observe positive density for ∼50% of the hydrogen atoms. A small improvement in the resolution was achieved by Ewald sphere correction which was expected to limit the resolution to ∼1.5 Å for a molecule of this diameter. Our study confirms that other protein complexes can be solved to near-atomic resolution. Future improvements in specimen preparation and protein complex stabilization may allow more flexible macromolecules to reach this level of resolution and should become a priority of study in the field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于脂质的纳米药物(LBNMs),包括脂质体,脂质纳米颗粒(LNP)和细胞外囊泡(EV),被认为是临床上最可接受的纳米制剂之一。然而,工作台到床边的翻译效率远远不能令人满意,主要是由于在单粒子水平上缺乏对其物理和生化属性的深入了解。在这次审查中,我们首先简要介绍了LBNMs,突出了过去几十年来的一些里程碑和相关的科学和临床成就,以及LBNM表征方面的巨大挑战。接下来,我们概述了LBNMs的每个类别以及在很大程度上决定其生物学特性和临床表现的核心特性,例如大小分布,颗粒浓度,形态学,药物封装和表面性能。然后,包括电子显微镜在内的几种分析技术的最新应用,原子力显微镜,荧光显微镜,拉曼显微术,纳米粒子跟踪分析,全面讨论了可调谐电阻脉冲传感和流式细胞术对LBNM单粒子表征的影响。特别是,强调了新开发的纳米流式细胞术的相对优势,该技术可以对小于40nm的LBNM的物理和生化特性进行定量分析,并具有高通量和统计稳健性。这篇综述文章的总体目标是说明其重要性,与LBNM单粒子表征相关的挑战和成就。
    Lipid-based nanomedicines (LBNMs), including liposomes, lipid nanoparticles (LNPs) and extracellular vesicles (EVs), are recognized as one of the most clinically acceptable nano-formulations. However, the bench-to-bedside translation efficiency is far from satisfactory, mainly due to the lack of in-depth understanding of their physical and biochemical attributes at the single-particle level. In this review, we first give a brief introduction of LBNMs, highlighting some milestones and related scientific and clinical achievements in the past several decades, as well as the grand challenges in the characterization of LBNMs. Next, we present an overview of each category of LBNMs as well as the core properties that largely dictate their biological characteristics and clinical performance, such as size distribution, particle concentration, morphology, drug encapsulation and surface properties. Then, the recent applications of several analytical techniques including electron microscopy, atomic force microscopy, fluorescence microscopy, Raman microscopy, nanoparticle tracking analysis, tunable resistive pulse sensing and flow cytometry on the single-particle characterization of LBNMs are thoroughly discussed. Particularly, the comparative advantages of the newly developed nano-flow cytometry that enables quantitative analysis of both the physical and biochemical characteristics of LBNMs smaller than 40 nm with high throughput and statistical robustness are emphasized. The overall aim of this review article is to illustrate the importance, challenges and achievements associated with single-particle characterization of LBNMs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    第21个氨基酸,硒代半胱氨酸(Sec),在其专用转移RNA(tRNASec)上合成。在细菌中,Sec是通过硒代半胱氨酸合成酶(SelA)从Ser-tRNA[Ser]Sec合成的,它是Sec生物合成中的关键酶。细菌SelA的结构表征对于破译其催化机理及其在Sec合成途径调节中的作用至关重要。这里,我们提供了细菌SelA的全面单粒子低温电子显微镜(SPAcryoEM)结构,总分辨率为2.69。使用重组大肠杆菌SelA,我们纯化并制备了单颗粒冷冻EM样品。来自SelA的结构见解,结合以前的体内和体外知识,强调了在SelA的功能中,解数化不可或缺的作用。此外,我们的结构分析证实了先前的结果表明,SelA采用二聚体构型的五聚体,和活动站点架构,底物结合袋,和关键的K295催化残留物进行了识别和详细描述。细菌酶与其对应物之间的蛋白质结构和底物协调的差异提供了令人信服的结构证据,支持自然界中存在的细菌和古细菌/真核生物Ser-Sec生物合成的独立分子进化。
    The 21st amino acid, selenocysteine (Sec), is synthesized on its dedicated transfer RNA (tRNASec). In bacteria, Sec is synthesized from Ser-tRNA[Ser]Sec by Selenocysteine Synthase (SelA), which is a pivotal enzyme in the biosynthesis of Sec. The structural characterization of bacterial SelA is of paramount importance to decipher its catalytic mechanism and its role in the regulation of the Sec-synthesis pathway. Here, we present a comprehensive single-particle cryo-electron microscopy (SPA cryoEM) structure of the bacterial SelA with an overall resolution of 2.69 Å. Using recombinant Escherichia coli SelA, we purified and prepared samples for single-particle cryoEM. The structural insights from SelA, combined with previous in vivo and in vitro knowledge, underscore the indispensable role of decamerization in SelA\'s function. Moreover, our structural analysis corroborates previous results that show that SelA adopts a pentamer of dimers configuration, and the active site architecture, substrate binding pocket, and key K295 catalytic residue are identified and described in detail. The differences in protein architecture and substrate coordination between the bacterial enzyme and its counterparts offer compelling structural evidence supporting the independent molecular evolution of the bacterial and archaea/eukarya Ser-Sec biosynthesis present in the natural world.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在应对有限(或没有)低温电子显微镜(cryo-EM)基础设施的实验室和大学所面临的挑战时,ESRF,与格勒诺布尔结构生物学研究所(IBS)合作,已经实施了cryo-EM解决方案到结构(SOS)管道。这个包容性的过程,从网格准备到高分辨率数据收集,涵盖单粒子分析和低温电子层析成像(cryo-ET)。可通过滚动访问路线访问,建议经过科学价值和技术可行性评估。严格的可行性标准需要样本同质性的有力证据。提供了两个不同的切入点:用户可以提交纯化的蛋白质样品进行全面处理,也可以使用已经玻璃化的低温EM网格启动管道。SOS管道集成了阴性染色成像(蛋白质样品专用)作为第一个质量步骤,然后是低温EM网格准备,用于单粒子分析的网格筛选和初步数据收集,或者只有冷冻ET的前两个步骤。在这两种情况下,如果筛选步骤成功完成,高分辨率数据收集将使用TitanKrios显微镜进行,该显微镜配备了最新一代的直接电子计数探测器和能量过滤器。因此,SOS管道成为一种全面高效的解决方案,进一步民主化的冷冻EM研究。
    In addressing the challenges faced by laboratories and universities with limited (or no) cryo-electron microscopy (cryo-EM) infrastructure, the ESRF, in collaboration with the Grenoble Institute for Structural Biology (IBS), has implemented the cryo-EM Solution-to-Structure (SOS) pipeline. This inclusive process, spanning grid preparation to high-resolution data collection, covers single-particle analysis and cryo-electron tomography (cryo-ET). Accessible through a rolling access route, proposals undergo scientific merit and technical feasibility evaluations. Stringent feasibility criteria demand robust evidence of sample homogeneity. Two distinct entry points are offered: users can either submit purified protein samples for comprehensive processing or initiate the pipeline with already vitrified cryo-EM grids. The SOS pipeline integrates negative stain imaging (exclusive to protein samples) as a first quality step, followed by cryo-EM grid preparation, grid screening and preliminary data collection for single-particle analysis, or only the first two steps for cryo-ET. In both cases, if the screening steps are successfully completed, high-resolution data collection will be carried out using a Titan Krios microscope equipped with a latest-generation direct electron counting detector coupled to an energy filter. The SOS pipeline thus emerges as a comprehensive and efficient solution, further democratizing access to cryo-EM research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    低温电子显微镜(cryo-EM)是一种成像技术,可以在近原子分辨率下可视化蛋白质和大分子复合物。用于防止对生物样品的辐射损伤的低电子剂量导致噪声功率比信号功率强100倍的图像。从这些低信噪比(SNR)图像中准确识别蛋白质是一项关键任务,作为检测到的位置用作下游3D结构确定过程的输入。当前的方法要么无法识别所有真阳性,要么导致许多假阳性,尤其是在分析小尺寸蛋白质的图像时,这些蛋白质的对比度极低,或需要手动标签,可能需要几天才能完成。承认准确的蛋白质鉴定取决于显微照片的视觉可解释性,我们提出了一个框架,可以执行去噪和检测的联合方式,使粒子定位在极低的信噪比条件下,使用自监督去噪和粒子识别从稀疏注释的数据。我们在三个具有挑战性的单粒子低温EM数据集和来自一个极低SNR的低温电子层析成像数据集的投影图像上验证了我们的方法,表明它比用于低温EM图像分析的现有最先进的方法有很大的优势。我们还评估了在降低SNR条件下算法的性能,并表明我们的方法比竞争方法对噪声更具鲁棒性。
    Cryo-electron microscopy (cryo-EM) is an imaging technique that allows the visualization of proteins and macromolecular complexes at near-atomic resolution. The low electron doses used to prevent radiation damage to the biological samples result in images where the power of noise is 100 times stronger than that of the signal. Accurate identification of proteins from these low signal-to-noise ratio (SNR) images is a critical task, as the detected positions serve as inputs for the downstream 3D structure determination process. Current methods either fail to identify all true positives or result in many false positives, especially when analyzing images from smaller-sized proteins that exhibit extremely low contrast, or require manual labeling that can take days to complete. Acknowledging the fact that accurate protein identification is dependent upon the visual interpretability of micrographs, we propose a framework that can perform denoising and detection in a joint manner and enable particle localization under extremely low SNR conditions using self-supervised denoising and particle identification from sparsely annotated data. We validate our approach on three challenging single-particle cryo-EM datasets and projection images from one cryo-electron tomography dataset with extremely low SNR, showing that it outperforms existing state-of-the-art methods used for cryo-EM image analysis by a significant margin. We also evaluate the performance of our algorithm under decreasing SNR conditions and show that our method is more robust to noise than competing methods.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    使用单粒子低温电子显微镜(SPAcryo-EM)可以获得生物分子的高分辨率结构,并且通过这种方法解决的结构数量迅速增加,这鼓励了更多的研究人员使用这种技术。和其他结构生物学方法一样,SPA低温EM数据收集的样品制备需要一些专业知识,并且需要了解该技术的优势和局限性,以便在样品制备过程中做出明智的决定。在这篇文章中,描述了常见的策略和陷阱,并给出了实用的建议,以增加启动SPAcryo-EM项目时的成功机会。
    High-resolution structures of biomolecules can be obtained using single-particle cryo-electron microscopy (SPA cryo-EM), and the rapidly growing number of structures solved by this method is encouraging more researchers to utilize this technique. As with other structural biology methods, sample preparation for an SPA cryo-EM data collection requires some expertise and an understanding of the strengths and limitations of the technique in order to make sensible decisions in the sample-preparation process. In this article, common strategies and pitfalls are described and practical advice is given to increase the chances of success when starting an SPA cryo-EM project.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    单粒子低温电子显微镜(cryo-EM)是一种强大的成像方式,能够以近原子分辨率可视化蛋白质和大分子复合物。用于防止对生物样品的辐射损伤的低电子剂量,然而,导致图像中噪声的功率比信号的功率大100倍。为了克服这些低信噪比(SNR),平均成百上千的粒子投影以确定感兴趣的分子的三维结构。高分辨率成像的采样要求对可用于采集的像素尺寸施加了限制,限制视野的大小,并需要几天的数据收集会议,以积累足够数量的粒子。同时,最近基于神经网络的图像超分辨率(SR)技术在自然图像上显示了最先进的性能。在这些进步的基础上,在这里,我们提出了一种基于深度内部学习的多图像SR算法,该算法专门用于在低信噪比条件下工作。我们的方法利用了cryo-EM电影的内部图像统计信息,不需要对真实数据进行训练。当应用于脱铁蛋白和T20S蛋白酶体的单颗粒数据集时,我们表明,从SR显微照片获得的3D结构的分辨率可以超过成像系统施加的限制。我们的结果表明,低放大率成像与硅片图像SR的组合有可能通过在每次曝光中包含更多的粒子来加速低温EM数据收集,并且在不牺牲分辨率的情况下这样做。
    Single-particle cryo-electron microscopy (cryo-EM) is a powerful imaging modality capable of visualizing proteins and macromolecular complexes at near-atomic resolution. The low electron-doses used to prevent radiation damage to the biological samples, however, result in images where the power of the noise is 100 times greater than the power of the signal. To overcome these low signal-to-noise ratios (SNRs), hundreds of thousands of particle projections are averaged to determine the three-dimensional structure of the molecule of interest. The sampling requirements of high-resolution imaging impose limitations on the pixel sizes that can be used for acquisition, limiting the size of the field of view and requiring data collection sessions of several days to accumulate sufficient numbers of particles. Meanwhile, recent image super-resolution (SR) techniques based on neural networks have shown state-of-the-art performance on natural images. Building on these advances, here, we present a multiple-image SR algorithm based on deep internal learning designed specifically to work under low-SNR conditions. Our approach leverages the internal image statistics of cryo-EM movies and does not require training on ground-truth data. When applied to single-particle datasets of apoferritin and T20S proteasome, we show that the resolution of the 3D structure obtained from SR micrographs can surpass the limits imposed by the imaging system. Our results indicate that the combination of low magnification imaging with in silico image SR has the potential to accelerate cryo-EM data collection by virtue of including more particles in each exposure and doing so without sacrificing resolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    Sulfolobusacidocalarius的表面层由一个灵活但稳定的外部蛋白质层组成,该蛋白质层与内部蛋白质相互作用,膜结合蛋白。
    The surface layer of Sulfolobus acidocaldarius consists of a flexible but stable outer protein layer that interacts with an inner, membrane-bound protein.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    表面层(S层)是弹性的二维蛋白质晶格,可封装许多细菌和大多数古细菌。在古细菌中,S层通常形成细胞壁的唯一结构成分,因此充当细胞与其环境之间的最终边界。因此,S层对于支持微生物生命至关重要。尽管它们很重要,在原子水平上对古细菌S层知之甚少。这里,我们结合单粒子低温电子显微镜(cryoEM),低温电子层析成像(cryoET)和Alphafold2预测,以生成Sulfolobusacidocaldarius的两组分S层的原子模型。该S层(SlaA)的外部组件是柔性的,高度糖基化,稳定的蛋白质连同内部和膜结合组件(SlaB),它们组装成多孔交织的格子。我们假设刀刀状的构象变化,变化在S层装配中起着重要的作用。
    Surface layers (S-layers) are resilient two-dimensional protein lattices that encapsulate many bacteria and most archaea. In archaea, S-layers usually form the only structural component of the cell wall and thus act as the final frontier between the cell and its environment. Therefore, S-layers are crucial for supporting microbial life. Notwithstanding their importance, little is known about archaeal S-layers at the atomic level. Here, we combined single-particle cryo electron microscopy, cryo electron tomography, and Alphafold2 predictions to generate an atomic model of the two-component S-layer of Sulfolobus acidocaldarius. The outer component of this S-layer (SlaA) is a flexible, highly glycosylated, and stable protein. Together with the inner and membrane-bound component (SlaB), they assemble into a porous and interwoven lattice. We hypothesise that jackknife-like conformational changes in SlaA play important roles in S-layer assembly.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    低温电子显微镜(cryo-EM)单粒子分析彻底改变了二十面体病毒的结构分析,包括尾噬菌体.近年来,局部(或集中)重建已成为一种强大的数据分析方法,可以捕获对称不匹配并解决二十面体病毒中的不对称特征。这里,我们描述了用于重建志贺氏菌属噬菌体Sf6的2.65-MDa尾部装置的方法,该志贺氏菌属噬菌体Sf6是杆虫科超家族的代表成员。
    Cryogenic electron microscopy (cryo-EM) single-particle analysis has revolutionized the structural analysis of icosahedral viruses, including tailed bacteriophages. In recent years, localized (or focused) reconstruction has emerged as a powerful data analysis method to capture symmetry mismatches and resolve asymmetric features in icosahedral viruses. Here, we describe the methods used to reconstruct the 2.65-MDa tail apparatus of the Shigella phage Sf6, a representative member of the Podoviridae superfamily.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号