patterning

图案化
  • 文章类型: Journal Article
    本研究旨在建立和优化使用热压花技术制造生物相容性聚合物ParyleneC的3D微结构的工艺。不同的工艺参数,如压花温度,压花力,脱模温度和速度,优化了脱模剂的使用,利用粘合剂微柱作为用例。为了增强与传统半导体制造技术的兼容性,ParyleneC的热压花是从常规的不锈钢基板到硅片平台。此外,此调整包括研究热压印工艺对嵌入ParyleneC中的金属层的影响,确保与先前演示的超薄Parylene印刷电路板(PCB)的兼容性。为了评估产生的微观结构,采用了表征方法的组合,包括光学显微镜(LM)和扫描电子显微镜(SEM),X射线衍射(XRD)X射线光电子能谱(XPS),和傅里叶变换红外光谱(FTIR)。这些方法提供了对形态学的全面见解,化学,考虑到与现有的ParyleneC图案化技术(如等离子蚀刻或激光烧蚀)相比的改进结果,开发的热压印方法产生了优越的结构完整性,其特征在于增加的特征分辨率和增强的侧壁光滑度。这些进步使得该方法特别适合于不同的应用,包括但不限于,传感器光学元件,医用可穿戴设备的粘合接口,和微流体系统。
    This study aims to establish and optimize a process for the fabrication of 3D microstructures of the biocompatible polymer Parylene C using hot embossing techniques. The different process parameters such as embossing temperature, embossing force, demolding temperature and speed, and the usage of a release agent were optimized, utilizing adhesive micropillars as a use case. To enhance compatibility with conventional semiconductor fabrication techniques, hot embossing of Parylene C was adapted from conventional stainless steel substrates to silicon chip platforms. Furthermore, this adaptation included an investigation of the effects of the hot embossing process on metal layers embedded in the Parylene C, ensuring compatibility with the ultra-thin Parylene printed circuit board (PCB) demonstrated previously. To evaluate the produced microstructures, a combination of characterization methods was employed, including light microscopy (LM) and scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR). These methods provided comprehensive insights into the morphological, chemical, and structural properties of the embossed Parylene C. Considering the improved results compared to existing patterning techniques for Parylene C like plasma etching or laser ablation, the developed hot embossing approach yields a superior structural integrity, characterized by increased feature resolution and enhanced sidewall smoothness. These advancements render the method particularly suitable for diverse applications, including but not limited to, sensor optical components, adhesive interfaces for medical wearables, and microfluidic systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    许多sal可以完全再生出功能完整的肢体。肢体再生是一个精心协调的过程,涉及几个定义的阶段。再生过程中的一个关键事件是胚芽的图案化,以告知细胞必须分化为什么。尽管已知许多参与肢体初始发育的基因在再生过程中被重复使用,这个过程中涉及的确切分子电路还没有完全理解。轴突肢体再生的一些大规模转录谱分析研究已经确定了许多在截肢后上调的转录因子。Sall4是一种转录因子,已被鉴定为在发育过程中维持细胞处于未分化状态中起重要作用,并且在肢体发育中也起着独特的作用。在肢体芽发育过程中Sall4的失活导致肢体的前后图案缺陷。已发现Sall4在非洲爪狼和sal的肢体再生过程中上调,但到目前为止,它的功能尚未测试。我们使用qRT-PCR证实了Sall4在axolotl中的肢体再生过程中上调,并鉴定了它存在于皮肤细胞中,也存在于胚层内的细胞中。使用CRISPR技术,我们将与cas9蛋白复合的Sall4特异性gRNA微注射到胚芽中,以仅在胚芽细胞中特异性敲除Sall4。这导致了肢体再生缺陷,包括缺失的数字,数字元素的融合,桡骨和尺骨的缺陷.这表明在再生过程中,Sall4可能在调节前近端骨骼元素的规格方面发挥类似的作用。
    Many salamanders can completely regenerate a fully functional limb. Limb regeneration is a carefully coordinated process involving several defined stages. One key event during the regeneration process is the patterning of the blastema to inform cells of what they must differentiate into. Although it is known that many genes involved in the initial development of the limb are re-used during regeneration, the exact molecular circuitry involved in this process is not fully understood. Several large-scale transcriptional profiling studies of axolotl limb regeneration have identified many transcription factors that are up-regulated after limb amputation. Sall4 is a transcription factor that has been identified to play essential roles in maintaining cells in an undifferentiated state during development and also plays a unique role in limb development. Inactivation of Sall4 during limb bud development results in defects in anterior-posterior patterning of the limb. Sall4 has been found to be up-regulated during limb regeneration in both Xenopus and salamanders, but to date it function has been untested. We confirmed that Sall4 is up-regulated during limb regeneration in the axolotl using qRT-PCR and identified that it is present in the skin cells and also in cells within the blastema. Using CRISPR technology we microinjected gRNAs specific for Sall4 complexed with cas9 protein into the blastema to specifically knockout Sall4 in blastema cells only. This resulted in limb regenerate defects, including missing digits, fusion of digit elements, and defects in the radius and ulna. This suggests that during regeneration Sall4 may play a similar role in regulating the specification of anterior-proximal skeletal elements.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    多能干细胞系之间的遗传差异导致细胞外信号通路的可变活性,定向分化方案的限制性可重复性。在这里,我们使用人胚胎干细胞(hESCs)来询问外源因子如何调节前肠内胚层谱系规范过程中的内源性信号事件。我们发现转化生长因子β1(TGF-β1)激活了推定的人类OTX2/LHX1基因调控网络,该网络通过拮抗内源性Wnt信号来促进前命运。与豪猪抑制相反,TGF-β1的作用不能被外源性Wnt配体逆转,提示SHISA蛋白的诱导和Fzd受体的细胞内积累使TGF-β1处理的细胞对Wnt信号传导难以反应。随后,TGF-β1介导的BMP和Wnt信号抑制抑制肝脏命运并促进胰腺命运。此外,TGF-β1治疗和胰腺特化期间的Wnt抑制联合可重复且稳健地增强hESC细胞系中胰岛素+细胞产量。广泛使用的分化方案的这种修改将提高用于基于细胞的治疗应用的胰腺β细胞产量。
    Genetic differences between pluripotent stem cell lines cause variable activity of extracellular signaling pathways, limiting reproducibility of directed differentiation protocols. Here we used human embryonic stem cells (hESCs) to interrogate how exogenous factors modulate endogenous signaling events during specification of foregut endoderm lineages. We find that transforming growth factor β1 (TGF-β1) activates a putative human OTX2/LHX1 gene regulatory network which promotes anterior fate by antagonizing endogenous Wnt signaling. In contrast to Porcupine inhibition, TGF-β1 effects cannot be reversed by exogenous Wnt ligands, suggesting that induction of SHISA proteins and intracellular accumulation of Fzd receptors render TGF-β1-treated cells refractory to Wnt signaling. Subsequently, TGF-β1-mediated inhibition of BMP and Wnt signaling suppresses liver fate and promotes pancreas fate. Furthermore, combined TGF-β1 treatment and Wnt inhibition during pancreatic specification reproducibly and robustly enhance INSULIN+ cell yield across hESC lines. This modification of widely used differentiation protocols will enhance pancreatic β cell yield for cell-based therapeutic applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    组织褶皱是对器官功能至关重要的结构基序。在肠道里,平坦的上皮弯曲成周期性的褶皱图案会产生绒毛,手指状突起,使营养吸收。然而,驱动绒毛形态发生的分子和机械过程仍不清楚。这里,我们确定了一种主动的机械机制,该机制可以同时图案化和折叠肠上皮以启动绒毛形成。在细胞层面,我们发现PDGFRA+上皮下间充质细胞产生肌球蛋白II依赖性力,足以在邻近组织界面产生模式化曲率.这种对称破坏过程需要通过基质金属蛋白酶介导的组织流化来改变细胞和细胞外基质的相互作用。计算模型,以及体外和体内实验,揭示了这些细胞特征在组织水平上表现为界面张力的差异,该差异通过类似于薄液膜的主动去湿的过程促进间充质聚集和界面弯曲。
    Tissue folds are structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, finger-like protrusions that enable nutrient absorption. However, the molecular and mechanical processes driving villus morphogenesis remain unclear. Here, we identify an active mechanical mechanism that simultaneously patterns and folds the intestinal epithelium to initiate villus formation. At the cellular level, we find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. This symmetry-breaking process requires altered cell and extracellular matrix interactions that are enabled by matrix metalloproteinase-mediated tissue fluidization. Computational models, together with in vitro and in vivo experiments, revealed that these cellular features manifest at the tissue level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active dewetting of a thin liquid film.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    皮层肌球蛋白收缩和细胞粘附共同作用,促进组织形态改变,但是如何调节它们以实现不同的形态发生结果仍不清楚。上皮折叠通过根尖收缩发生,由与粘附连接有关的收缩肌球蛋白的顶端积累介导,如果蝇腹沟形成。虽然收缩肌球蛋白水平与根尖收缩相关,粘附连接的水平是否调节根尖收缩是未知的。我们确定了一种新型的果蝇基因护城河,该护城河保持低水平的Bazooka/Par3依赖性粘附连接,从而限制了具有高水平收缩肌球蛋白的腹沟细胞的顶端收缩。在护城河突变体中,异常高水平的Bazooka/Par3依赖性粘附连接促进低水平收缩肌球蛋白细胞的异位根尖收缩,对于野生型的顶端收缩是不够的。这种异位心尖收缩扩大了从腹沟到外胚层前肠的内折叠行为,这通常会形成后来的循环内陷。在moat突变腹沟中,扰动的根尖收缩梯度延迟向内折叠。我们的结果表明,粘附连接的水平可以调节根尖收缩的结果,提供了一种额外的机制来定义形态发生边界。
    新基因沟的表征表明,由于Bazooka/Par3依赖性粘附连接的异常高水平而导致根尖收缩的异位扩张,而没有早期图案化基因表达的缺陷。
    Cortical myosin contraction and cell adhesion work together to promote tissue shape changes, but how they are modulated to achieve diverse morphogenetic outcomes remains unclear. Epithelial folding occurs via apical constriction, mediated by apical accumulation of contractile myosin engaged with adherens junctions, as in Drosophila ventral furrow formation. While levels of contractile myosin correlate with apical constriction, whether levels of adherens junctions modulate apical constriction is unknown. We identified a novel Drosophila gene moat that maintains low levels of Bazooka/Par3-dependent adherens junctions and thereby restricts apical constriction to ventral furrow cells with high-level contractile myosin. In moat mutants, abnormally high levels of Bazooka/Par3-dependent adherens junctions promote ectopic apical constriction in cells with low-level contractile myosin, insufficient for apical constriction in wild type. Such ectopic apical constriction expands infolding behavior from ventral furrow to ectodermal anterior midgut, which normally forms a later circular invagination. In moat mutant ventral furrow, a perturbed apical constriction gradient delays infolding. Our results indicate that levels of adherens junctions can modulate the outcome of apical constriction, providing an additional mechanism to define morphogenetic boundaries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肠神经系统(ENS)控制胃肠(GI)运动,ENS发育缺陷是儿科胃肠动力障碍的基础。在诸如先天性巨结肠病(HSCR)等疾病中,小儿假性肠梗阻(PIPO),和肠道神经元发育不良B型(INDB),ENS结构发生改变,注意到HSCR中神经元密度降低,PIPO和INDB中神经元密度增加。这些结构性缺陷的发展起源尚未完全了解。这里,我们结合有关ENS结构的新数据,综述了目前对ENS发育和小儿胃肠动力障碍的认识.特别是,新出现的证据表明,在小鼠和人类发育过程中,肠神经元沿着肠的纵轴被图案化为圆周条纹。这种对ENS结构的新理解提出了有关小儿胃肠动力障碍的病理生理学的新问题。如果ENS被组织成条纹,HSCR中观察到的肠神经元密度的变化,PIPO,和INDB代表肠神经元条纹分布的差异?这里,我们回顾了其他生物系统中条纹图案形成的机制,并提出了条纹ENS图案形成的缺陷如何解释儿科胃肠动力障碍中观察到的结构缺陷.
    The enteric nervous system (ENS) controls gastrointestinal (GI) motility, and defects in ENS development underlie pediatric GI motility disorders. In disorders such as Hirschsprung\'s disease (HSCR), pediatric intestinal pseudo-obstruction (PIPO), and intestinal neuronal dysplasia type B (INDB), ENS structure is altered with noted decreased neuronal density in HSCR and reports of increased neuronal density in PIPO and INDB. The developmental origin of these structural deficits is not fully understood. Here, we review the current understanding of ENS development and pediatric GI motility disorders incorporating new data on ENS structure. In particular, emerging evidence demonstrates that enteric neurons are patterned into circumferential stripes along the longitudinal axis of the intestine during mouse and human development. This novel understanding of ENS structure proposes new questions about the pathophysiology of pediatric GI motility disorders. If the ENS is organized into stripes, could the observed changes in enteric neuron density in HSCR, PIPO, and INDB represent differences in the distribution of enteric neuronal stripes? We review mechanisms of striped patterning from other biological systems and propose how defects in striped ENS patterning could explain structural deficits observed in pediatric GI motility disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    ARF小GTP酶的GNOM(GN)鸟嘌呤核苷酸交换因子(ARF-GEF)是植物中研究最好的贩运调节剂之一,在图案和极性方面发挥着关键和独特的发展作用。当前模型将GN放置在高尔基体(GA)处,它介导分泌/再循环,并且在质膜(PM)上可能导致网格蛋白介导的内吞作用(CME)。GN发展功能的机理基础,与其他ARF-GEF不同,包括其最接近的同源GNOM-LIKE1(GNL1),仍然难以捉摸。这项研究的见解在很大程度上扩展了GN功能的当前概念。我们证明GN,但不是GNL1,定位于细胞外围的长寿命结构,不同于网格蛋白包被的凹坑,而CME和分泌在gn敲除中正常进行。功能GN突变体变体GNfewerroots,缺席GA,表明细胞外围是GN作用的主要位点,负责其发育功能。BrefeldinA抑制后,GN,但不是GNL1,重新定位到PM可能在外细胞囊泡上,提示在通往细胞外围的路线上选择性的分子缔合。对GN-GNL1嵌合ARF-GEF的研究表明,所有GN结构域都以部分冗余的方式贡献于特定的GN功能。一起,这项研究为阐明GNOM独特细胞和发育功能的潜在机制提供了重要步骤。
    The GNOM (GN) Guanine nucleotide Exchange Factor for ARF small GTPases (ARF-GEF) is among the best studied trafficking regulators in plants, playing crucial and unique developmental roles in patterning and polarity. The current models place GN at the Golgi apparatus (GA), where it mediates secretion/recycling, and at the plasma membrane (PM) presumably contributing to clathrin-mediated endocytosis (CME). The mechanistic basis of the developmental function of GN, distinct from the other ARF-GEFs including its closest homologue GNOM-LIKE1 (GNL1), remains elusive. Insights from this study largely extend the current notions of GN function. We show that GN, but not GNL1, localizes to the cell periphery at long-lived structures distinct from clathrin-coated pits, while CME and secretion proceed normally in gn knockouts. The functional GN mutant variant GNfewerroots, absent from the GA, suggests that the cell periphery is the major site of GN action responsible for its developmental function. Following inhibition by Brefeldin A, GN, but not GNL1, relocates to the PM likely on exocytic vesicles, suggesting selective molecular associations en route to the cell periphery. A study of GN-GNL1 chimeric ARF-GEFs indicates that all GN domains contribute to the specific GN function in a partially redundant manner. Together, this study offers significant steps toward the elucidation of the mechanism underlying unique cellular and development functions of GNOM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    亚毫米或微米级电控软致动器在微型机器人技术中具有巨大的潜力,触觉,和生物医学应用。然而,小型化和微图案化的开放空气软致动器的制造仍然具有挑战性。在这项研究中,我们通过气溶胶喷射印刷(AJP)演示了三层电化学致动器(ECAs)的微加工,具有10μm横向分辨率的快速成型方法。我们完全印刷1000×5000×12μm3超薄ECA,其各自包括夹在两个聚(3,4-亚乙基二氧噻吩)聚苯乙烯磺酸盐(PEDOT:PSS)电极层之间的Nafion电解质层。ECAs由于水合质子的电场驱动迁移而致动。由于薄度导致低质子传输长度和低弯曲刚度,印刷的ECA可以在低电压(~0.5V)下工作,并具有相对较快的响应(~秒)。我们打印由两个单独控制的亚毫米段组成的致动器的所有组件,并演示其多模态致动。方便,多功能性,快速性,我们的微加工策略的低成本有望在紧凑的可拉伸电子电路上集成复杂图案化的单独控制的软微致动器阵列的未来发展。
    Submillimeter or micrometer scale electrically controlled soft actuators have immense potential in microrobotics, haptics, and biomedical applications. However, the fabrication of miniaturized and micropatterned open-air soft actuators has remained challenging. In this study, we demonstrate the microfabrication of trilayer electrochemical actuators (ECAs) through aerosol jet printing (AJP), a rapid prototyping method with a 10 μm lateral resolution. We make fully printed 1000 × 5000 × 12 μm3 ultrathin ECAs, each of which comprises a Nafion electrolyte layer sandwiched between two poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) electrode layers. The ECAs actuate due to the electric-field-driven migration of hydrated protons. Due to the thinness that gives rise to a low proton transport length and a low flexural rigidity, the printed ECAs can operate under low voltages (∼0.5 V) and have a relatively fast response (∼seconds). We print all the components of an actuator that consists of two individually controlled submillimeter segments and demonstrate its multimodal actuation. The convenience, versatility, rapidity, and low cost of our microfabrication strategy promise future developments in integrating arrays of intricately patterned individually controlled soft microactuators on compact stretchable electronic circuits.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在早期神经发育中,中枢神经系统是通过协调各种神经组织者指导组织模式和细胞分化而建立的。更好地概括形态发生素梯度的产生和信号传导对于建立改善的体外脑发育模型至关重要。这里,我们开发了一种方法,通过组装聚二甲基硅氧烷装置,能够产生持续的化学梯度,以产生图案化的脑类器官,我们称之为形态发生素梯度诱导的脑类器官(MIBO)。在3.5周,MIBO复制了在神经节隆起(GE)中观察到的背腹侧模式。通过单细胞RNA测序对成熟MIBO的分析显示出不同的背侧GE衍生的CALB2中间神经元,中等的多刺神经元,和中间GE衍生的细胞类型。最后,我们证明了MIBO的长期培养能力,可在长达5.5个月的培养物中保持稳定的神经活动。MIBO展示了一种用于生成用于胚胎发育和疾病建模的空间图案化的脑类器官的通用方法。
    In early neurodevelopment, the central nervous system is established through the coordination of various neural organizers directing tissue patterning and cell differentiation. Better recapitulation of morphogen gradient production and signaling will be crucial for establishing improved developmental models of the brain in vitro. Here, we developed a method by assembling polydimethylsiloxane devices capable of generating a sustained chemical gradient to produce patterned brain organoids, which we termed morphogen-gradient-induced brain organoids (MIBOs). At 3.5 weeks, MIBOs replicated dorsal-ventral patterning observed in the ganglionic eminences (GE). Analysis of mature MIBOs through single-cell RNA sequencing revealed distinct dorsal GE-derived CALB2+ interneurons, medium spiny neurons, and medial GE-derived cell types. Finally, we demonstrate long-term culturing capabilities with MIBOs maintaining stable neural activity in cultures grown up to 5.5 months. MIBOs demonstrate a versatile approach for generating spatially patterned brain organoids for embryonic development and disease modeling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    嗅觉受体(OR)选择代表了基因硬性随机性的一个例子,每个嗅觉神经元表达小鼠基因组中2000个OR等位基因中的一个,然而刻板的时尚。这里,我们提出,在OR表达的拓扑限制是建立在神经元祖细胞由两个相反的力量:多基因转录和基因组沉默,两者都受到转录因子NFIA的背腹梯度的影响,B,和X.OR基因的多基因转录可以定义空间受限的OR库,其中一个OR等位基因在发育后期被选择用于单一表达。OR等位基因的异染色质组装和基因组区室化也在嗅觉上皮的轴上变化,并且可能优先从该“特权”库中消除具有更多背侧表达目的地的异位表达OR。我们的实验将早期转录确定为未来发育模式的潜在“表观遗传”贡献者,并揭示了两个空间响应概率过程如何协同作用以建立确定性,精确,和随机基因表达的可重复区域。
    Olfactory receptor (OR) choice represents an example of genetically hardwired stochasticity, where every olfactory neuron expresses one out of ~2000 OR alleles in the mouse genome in a probabilistic, yet stereotypic fashion. Here, we propose that topographic restrictions in OR expression are established in neuronal progenitors by two opposing forces: polygenic transcription and genomic silencing, both of which are influenced by dorsoventral gradients of transcription factors NFIA, B, and X. Polygenic transcription of OR genes may define spatially constrained OR repertoires, among which one OR allele is selected for singular expression later in development. Heterochromatin assembly and genomic compartmentalization of OR alleles also vary across the axes of the olfactory epithelium and may preferentially eliminate ectopically expressed ORs with more dorsal expression destinations from this \'privileged\' repertoire. Our experiments identify early transcription as a potential \'epigenetic\' contributor to future developmental patterning and reveal how two spatially responsive probabilistic processes may act in concert to establish deterministic, precise, and reproducible territories of stochastic gene expression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号