mixotrophic denitrification

  • 文章类型: Journal Article
    Removal of nitrogen from wastewater with low carbon/nitrogen ratio was treated by using a denitrification packed bed reactor. Composite fillers with both autotrophic and heterotrophic denitrification capacity were prepared by mixing melted polycaprolactone and elemental sulfur at various alkalinity ratios (heterotrophic to autotrophic ratios of 1:2, 1:1, 3:2, and 2:1). Optimum denitrification was achieved at a ratio of 2:1. The diversity of the microbial community in the biofilm on the surface of the composite fillers showed that the increase of the elemental sulfur in the composite fillers has led to the increase of the microbial abundance. Furthermore, biofilm composition developed from a single dominant species to multiple species, and genes related to sulfur metabolism increased while those related to denitrification decreased slightly.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    这项研究调查了循环反硝化过滤器(CDF)对含盐废水的木材和硫异养-自养反硝化(WSHAD)的性能和微生物组。木材硫CDF整合到两个中试规模的海洋循环水产养殖系统中,实现了较高的反硝化速率(103±8.5gN/(m3·d))。与先前仅使用硫的含盐废水反硝化研究相比,松木和硫的结合使用导致SO42-积累更低。虽然鱼缸水质参数,包括氨,亚硝酸盐,硝酸盐和硫化物,低于海洋鱼类生产的抑制水平,与先前的研究相比,观察到的PoeciliaSpenops的存活率较低。在早期运行阶段,异养反硝化是主要的去除机制,而硫自养反硝化增加,因为木片释放的易于生物降解的有机碳随着时间的推移而减少。基于16SrRNA的CDF微生物组分析显示,Thioalbus,去氟单胞菌,和Ornatilinea是促成反硝化性能的著名属。
    This study investigated the performance and microbiome of cyclic denitrification filters (CDFs) for wood and sulfur heterotrophic-autotrophic denitrification (WSHAD) of saline wastewater. Wood-sulfur CDFs integrated into two pilot-scale marine recirculating aquaculture systems achieved high denitrification rates (103 ± 8.5 g N/(m3·d)). The combined use of pine wood and sulfur resulted in lower SO42- accumulation compared with prior saline wastewater denitrification studies with sulfur alone. Although fish tank water quality parameters, including ammonia, nitrite, nitrate and sulfide, were below the inhibitory levels for marine fish production, lower survival rates of Poecilia sphenops were observed compared with prior studies. Heterotrophic denitrification was the dominant removal mechanism during the early operational stages, while sulfur autotrophic denitrification increased as readily biodegradable organic carbon released from wood chips decreased over time. 16S rRNA-based analysis of the CDF microbiome revealed that Sulfurimonas, Thioalbus, Defluviimonas, and Ornatilinea as notable genera that contributed to denitrification performance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The effects of voltage intensity on the nutrient removal performance and microbial community in the iron electrolysis-integrated aerobic granular sludge (AGS) system were investigated over a period of 15 weeks. Results revealed that the application outcomes of iron electrolysis for AGS systems relied on voltage intensity. When a constant voltage of 1.5 V was applied, the sludge granulation was most obviously accelerated with a specific growth rate of the sludge diameter of 0.078 day-1, and the removal efficiencies of total nitrogen (TN) and total phosphorus (TP) increased by 14.1% and 20.2%, respectively, compared to the control reactor (without the iron electrolysis-integration). Moreover, the AGS developed at different voltages included different microbial communities, whose shifts were driven by the Fe content and the average diameter of AGS. Both heterotrophic nitrifiers and mixotrophic denitrifiers were significantly enriched in the AGS developed at 1.5 V, which effectively enhanced TN removal. Together with the response of the functional genes involved in Fe, N, and P metabolism, the electrolytic iron-driven nutrient degradation pathway was further elaborated. Overall, this study clarified the optimum voltage condition when iron electrolysis was integrated into the AGS system, and revealed the enhancement mechanism of this coupling technology on nutrient removal during the treatment of low-strength municipal wastewater.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Due to cause the deterioration of water quality and can produce toxic nitrite, the nitrate constituted of great threatens to human health and eco-systematic safety. Among most well-known biotechnology to remove nitrate, the integrated heterotrophic and autotrophic denitrification (IHAD) process is promising, especially for the organic-limited polluted water. In this work, the IHAD coupled manganese oxidation (IHAD-MnO) process was developed by using Pseudomonas sp. SZF15 (Gram negative strain, and rod-shaped morphology with 2.3 μm in length) in the glass serum bottles. It was found that limited organic content could accelerate nitrate removal rate, and manganese oxidation efficiency can reach up to 60.08%. To further explain carbon conversion characteristics of the process, pure heterotrophic condition assays were conducted, the results confirmed that inorganic carbon will be generated by organic carbon metabolism in heterotrophic condition, the maximum accumulation content of inorganic carbon was 142.21 mg/L (when the initial organic carbon level was 293 mg-C/L). Subsequently, since the consumption of organic carbon, biogenic inorganic carbon can be further utilized by microorganisms to support autotrophic denitrification (AuDN). Besides, X-ray photoelectron spectroscopy (XPS) was employed to analyze precipitation products produced from the process. The magnified Mn 2p spectra results showed that a typical characteristic peak of manganese dioxide was observed with the intense peak at 641.8 eV and a satellite peak at 653.7 eV, respectively. This showed that Mn(II) was oxidized to manganese dioxide by the process, which may be a functional material with adsorption properties. The process posed a highly efficient and cost effective solution with less carbon consumption and less greenhouse gas emission for sustainable water treatment technologies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    This study explored the role of calcium nitrate as a bio-stimulant for anaerobic ammonium oxidation (anammox) process. The anaerobic sequencing batch reactor was firstly inoculated with malodorous river sediment and only fed with calcium nitrate until no marked endogenous release of ammonium in effluent (Phase 1). Subsequently, nitrite and ammonium were supplied to test the performance of anammox process (Phase 2). During the operation of Phase 1, the effluent ammonium increased firstly and then decreased. Additionally, continuous nitrite (about 1.54 mgN/L) was observed in the effluent. The microbial analysis showed the simultaneous increase of the relative abundance of heterotrophic denitrifier Denitratisoma and sulfur autotrophic denitrifier Thiobacillus from 0.15% to 5.37% and 0.21% to 4.19%, respectively. Besides, 15N isotopes trace and qPCR results showed that the contribution of anammox to total nitrogen (TN) removal increased from 3.07% to 27.6%, and that the anammox functional gene hzsB increased from 1.37 × 105 to 2.90 × 106 copies/g. These results indicated that calcium nitrate may induce partial mixotrophic denitrification (heterotrophic and sulfur autotrophic denitrification) to provide nitrite as electron acceptor for anammox, thus promoting the occurrence of anammox. In Phase 2, rapid ammonium and TN removal were accomplished in the initial operation with the reduction efficiency of 80.1% and 90.0%, respectively. The relative abundance of anammox bacteria Candidatus_Brocadia significantly increased from 0.01% to 7.15% during the operation of Phase 2. These findings further confirmed the above deduction. Taken together, calcium nitrate can be a promising bio-stimulant for anammox process by promoting the coupling of mixotrophic denitrification with anammox.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The performance and process of the constructed pyrite-based mixotrophic denitrification (POMD) system using pyrite and residual organic matters as the co-electron donors were investigated for simultaneous removal of N and P from secondary effluent. After the batch experiments, 61.80 ± 3.26% of phosphate and 99.99 ± 0.01% of nitrate were removed, and the obtained nitrate removal rate constant can reach 2.09 days-1 in POMD system, which was significantly superior to that reported (0.95 day-1) in pyrite-based autotrophic denitrification (PAD) system. PO43--P removal was mainly achieved via chemical precipitation as FePO4 with iron, and it was irrelevant with the initial nitrate and ammonium concentrations. High-throughput 16S rRNA gene sequencing analysis showed the coexistence of heterotrophic and autotrophic denitrifiers in the mixotrophic environment. The denitrification process could be divided into two stages according to the carbon balance and calculation of sulfate accumulation: (a) nitrate was mainly reduced heterotrophically during 12-36 h and (b) nitrate was reduced autotrophically after 36 h. The calculated proportion of heterotrophic denitrification was 58.17 ± 3.78%, which was promoted by a higher ammonium concentration. These findings are likely to be useful in understanding the mixotrophic denitrification process and developing a cost-effective technology to simultaneously remove N and P from secondary effluent. Graphical abstract.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    本研究提出了新型复合材料TMCC/PAA/SA@Fe(TPSA),一种用于生物反应器系统的细菌固定化载体,以提高硝酸盐的同时去除效率,Ni(II)和磷。评估了各种操作因素对硝酸盐性能的影响,磷和Ni(Ⅱ)的去除。结果表明,在水力停留时间(HRT)为8h和pH7.0的最佳条件下,硝酸盐和磷的去除率达到近100%和61.7%。分别。当初始Ni(II)浓度为1mg/L时,达到约100%的Ni(II)去除效率。此外,分析了TPSA固定化细菌颗粒的形态和成分,以探讨同时硝酸盐的作用机理。Ni(Ⅱ)和除磷。与对照相比,实验反应器中的微生物代谢更活跃,尽管高浓度的Ni(II)可以抑制细菌活性。
    This study presents the novel composite material TMCC/PAA/SA@Fe(TPSA), a bacteria immobilized carrier for use in bioreactor systems to enhance the simultaneous removal efficiency of nitrate, Ni(II) and phosphorus. The influence of various operational factors were evaluated on the performance of nitrate, phosphorus and Ni(II) removal. Results demonstrate that under optimum conditions of an hydraulic retention time (HRT) of 8 h and pH 7.0, nitrate and phosphorus removal reached nearly 100% and 61.7%, respectively. When the initial Ni(II) concentration was 1 mg/L, approximately 100% Ni(II) removal efficiency was achieved. Furthermore, the morphology and components of the TPSA immobilized bacterial pellets were analyzed to investigate the mechanism of simultaneous nitrate, Ni(II) and phosphorus removal. Microbial metabolism was more active in the experimental reactor compared with control, although high concentrations of Ni(II) could inhibit bacterial activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    三个生态浮床(EFBs)具有不同的附加电子供体,包括硫代硫酸钠,建立了硫代硫酸钠和乙酸钠的混合电子给体和没有额外电子给体的混合电子给体,以比较脱氮效率的差异,一氧化二氮排放,自养和混合营养反硝化之间的微生物群落和功能基因。结果表明,当电子供体足够时,自养和混合营养过程的反硝化效率均接近100%,而在没有额外电子供体的情况下,反硝化效率为4%至43%。乙酸钠的添加可以有效降低出水硫酸盐浓度和氮氧化物通量。此外,高通量测序分析显示自养反硝化细菌在自养反硝化过程中占主导地位,兼性和异养反硝化细菌共存于混合营养反硝化中,没有优势属。对于具有混合的外部自养和异养电子供体的EFB,它不仅可以达到更好的脱氮效率,而且还减少了一氧化二氮的排放。
    Three ecological floating beds (EFBs) with different additional electron donors including sodium thiosulfate, mixed electron donors of sodium thiosulfate and sodium acetate and without additional electron donors were established to compare the differences of nitrogen removal efficiency, nitrous oxide emission, microbial community and functional gene between autotrophic and mixotrophic denitrification. Results showed denitrification efficiency was nearly 100% in both autotrophic and mixotrophic process when electron donors were sufficient while that ranged from 4 to 43% without additional electron donors. Sodium acetate addition could effectively decrease sulfate concentration in effluent and nitrogen oxide flux. In addition, high-throughput sequencing analysis revealed autotrophic denitrifying bacteria were dominant in autotrophic denitrification while autotrophic, facultative and heterotrophic denitrifying bacteria coexisted in mixotrophic denitrification, and there was no dominant genus. For EFB with mixed external autotrophic and heterotrophic electron donors, it can not only achieve better denitrification efficiency, but also reduce the emission of nitrous oxide.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    This study investigates the performance of a pyrite-based constructed wetland-microbial fuel cell (PCW-MFC) in chemical oxygen demand (COD), nitrate (NO3--N), total inorganic nitrogen (TIN), and total phosphorus (TP) removal and bioelectricity generation, and explores the mechanisms involved. Four microcosms were used: a constructed wetland (CW), a pyrite-based constructed wetland (PCW), a constructed wetland-microbial fuel cell (CW-MFC), and a PCW-MFC. After 180 days\' operation, the PCW-MFC exhibited enhanced simultaneous nitrate and phosphorus removal and bioelectricity output. The maximum COD, NO3--N, TIN, and TP removal efficiencies in the PCW-MFC were 71.9%, 70.1%, 63.2%, and 91.2%, respectively, for a hydraulic retention time (HRT) of 6 h. The mean bioelectricity output of the PCW-MFC was 19.0-28.4% higher than that of the CW-MFC. The nitrate removal rate constant of the PCW-MFC was 1.04 d-1, which is significantly higher than those of the others. Geobacter and sulfate-reducing bacteria were enriched in the PCW-MFC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    A simultaneous denitrification and Cd (II) removal of strain CC1 was isolated from Li Jiahe oligotrophic reservoir of Xi\'an (China). Strain CC1 was identified as Cupriavidus sp. The first-order reaction kinetics equation was to model kinetic processes of mixotrophic anaerobic denitrification and Cd(II) removal, which showed an optimal NO3--N removal rate was obtained at the C/N ratio of 5.0, temperature of 30.0 °C and Fe(II) concentration of 15.0 mg L-1. A highest Cd(II) removal rate was achieved at the C/N ratio of 4.0, temperature of 30.0 °C and Fe(II) concentration of 15.0 mg L-1. Moreover, the role of extracellular polymeric substances (EPS) and biological precipitation on Cd(II) removal were investigated using a group of adsorption experiments. Additionally, XPS and XRD analysis demonstrated the possible mechanisms of biological precipitation for the removal of Cd(II). The experiment showed that strain CC1 had the ability to remove nitrate and Cd (II) simultaneously, which makes it possible to treat complex polluted water.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号