intracellular infections

  • 文章类型: Journal Article
    内源性大麻素系统(ECS),最初确定它在维持体内平衡方面的作用,特别是在调节大脑功能方面,已经演变成一个复杂的协调器,影响各种生理过程,超出其与神经系统的原始关联。值得注意的是,越来越多的证据强调了ECS在调节免疫反应中的关键作用。虽然ECS在细菌感染中的具体作用仍在研究中,令人信服的迹象表明其积极参与宿主-病原体相互作用。将ECS纳入细菌病原体感染的框架为我们对其功能的理解引入了一层复杂性。虽然一些研究提出了大麻素调节细菌功能和免疫反应的潜力,结果本身取决于所考虑的特定感染和大麻素.此外,ECS和肠道微生物群之间的双向关系强调了不同生理过程之间复杂的相互作用。ECS的影响力远远超出了它最初的发现,在一系列医疗条件下成为有希望的治疗目标,包括细菌感染,生态失调,还有败血症.这篇综述全面探讨了ECS在细菌调节中的复杂作用,宿主对细菌感染的反应,和微生物组的动态。特别强调大麻素受体类型1和2的作用,其信号传导复杂地影响微生物-宿主相互作用中的免疫细胞功能。
    The endocannabinoid system (ECS), initially identified for its role in maintaining homeostasis, particularly in regulating brain function, has evolved into a complex orchestrator influencing various physiological processes beyond its original association with the nervous system. Notably, an expanding body of evidence emphasizes the ECS\'s crucial involvement in regulating immune responses. While the specific role of the ECS in bacterial infections remains under ongoing investigation, compelling indications suggest its active participation in host-pathogen interactions. Incorporating the ECS into the framework of bacterial pathogen infections introduces a layer of complexity to our understanding of its functions. While some studies propose the potential of cannabinoids to modulate bacterial function and immune responses, the outcomes inherently hinge on the specific infection and cannabinoid under consideration. Moreover, the bidirectional relationship between the ECS and the gut microbiota underscores the intricate interplay among diverse physiological processes. The ECS extends its influence far beyond its initial discovery, emerging as a promising therapeutic target across a spectrum of medical conditions, encompassing bacterial infections, dysbiosis, and sepsis. This review comprehensively explores the complex roles of the ECS in the modulation of bacteria, the host\'s response to bacterial infections, and the dynamics of the microbiome. Special emphasis is placed on the roles of cannabinoid receptor types 1 and 2, whose signaling intricately influences immune cell function in microbe-host interactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    卡介苗(BCG)是一种减毒细菌,源自牛分枝杆菌。它是用于预防儿童严重结核病的唯一许可疫苗。除了它对结核病的具体影响,在人和小鼠中异源刺激后,BCG施用还与有益的非特异性效应(NSE)相关。来自BCG的NSE可能与适应性和先天免疫反应有关。后者也被称为训练免疫(TI)。最近描述的先天细胞的生物学特征,能够基于代谢和表观遗传重编程来改善功能。目前,与BCG介导的TI相关的机制是紧张研究的焦点,但是许多差距仍然需要阐明。这篇综述讨论了目前对BCG诱导TI的理解,探索对造血干细胞和单核细胞/巨噬细胞谱系的训练表型至关重要的信号通路。它侧重于BCG介导的TI机制,包括代谢-表观遗传轴和这些细胞中对抗细胞内病原体的炎性小体途径。此外,这项研究探讨了不同免疫细胞类型中的TI,它具有防止各种细胞内感染的能力,以及将经过训练的先天记忆与适应性记忆相结合,以塑造下一代疫苗。
    The bacillus Calmette-Guérin (BCG) is an attenuated bacterium derived from virulent Mycobacterium bovis. It is the only licensed vaccine used for preventing severe forms of tuberculosis in children. Besides its specific effects against tuberculosis, BCG administration is also associated with beneficial non-specific effects (NSEs) following heterologous stimuli in humans and mice. The NSEs from BCG could be related to both adaptive and innate immune responses. The latter is also known as trained immunity (TI), a recently described biological feature of innate cells that enables functional improvement based on metabolic and epigenetic reprogramming. Currently, the mechanisms related to BCG-mediated TI are the focus of intense research, but many gaps are still in need of elucidation. This review discusses the present understanding of TI induced by BCG, exploring signaling pathways that are crucial to a trained phenotype in hematopoietic stem cells and monocytes/macrophages lineage. It focuses on BCG-mediated TI mechanisms, including the metabolic-epigenetic axis and the inflammasome pathway in these cells against intracellular pathogens. Moreover, this study explores the TI in different immune cell types, its ability to protect against various intracellular infections, and the integration of trained innate memory with adaptive memory to shape next-generation vaccines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    病原体如金黄色葡萄球菌能够在许多类型的宿主细胞中存活,包括吞噬细胞如嗜中性粒细胞和巨噬细胞,从而导致细胞内感染。通过常规抗菌剂治疗细胞内感染(例如,抗生素)通常由于药物的细胞内功效低而无效。因此,非常需要能够增强细胞内抗菌剂活性的新技术。我们最近的研究表明,光化学内化(PCI)是一种有前途的方法,可以提高庆大霉素等抗生素对细胞内葡萄球菌感染的疗效。在这一章中,我们描述了旨在使用RAW264.7细胞感染模型和斑马鱼胚胎感染模型在体外和体内研究PCI-抗生素治疗对细胞内感染的潜力的方案.证明了这种方法的概念。预期该方案将促进用于与病原体的细胞内存活相关的具有临床挑战性的感染性疾病的基于PCI抗微生物的新疗法的进一步开发。
    Pathogens such as Staphylococcus aureus are able to survive in many types of host cells including phagocytes such as neutrophils and macrophages, thereby resulting in intracellular infections. Treatment of intracellular infections by conventional antimicrobials (e.g., antibiotics) is often ineffective due to low intracellular efficacy of the drugs. Thus, novel techniques which can enhance the activity of antimicrobials within cells are highly demanded. Our recent studies have shown that photochemical internalization (PCI) is a promising approach for improving the efficacy of antibiotics such as gentamicin against intracellular staphylococcal infection. In this chapter, we describe the protocols aiming to study the potential of PCI-antibiotic treatment for intracellular infections in vitro and in vivo using a RAW 264.7 cell infection model and a zebrafish embryo infection model. Proof of concept of this approach is demonstrated. The protocols are expected to prompt further development of PCI-antimicrobial based novel therapies for clinically challenging infectious diseases associated with intracellular survival of pathogens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Recalcitrant respiratory tract infections caused by bacteria have emerged as one of the greatest health challenges worldwide. Aerosolized antimicrobial therapy is becoming increasingly attractive to combat such infections, as it allows targeted delivery of high drug concentrations to the infected organ while limiting systemic exposure. However, successful aerosolized antimicrobial therapy is still challenged by the diverse biological barriers in infected lungs. Nanoparticle-mediated pulmonary drug delivery is gaining increasing attention as a means to overcome the biological barriers and accomplish site-specific drug delivery by controlling release of the loaded drug(s) at the target site. With the aim to summarize emerging efforts in combating respiratory tract infections by using nanoparticle-mediated pulmonary delivery strategies, this review provides a brief introduction to the bacterial infection-related pulmonary diseases and the biological barriers for effective treatment of recalcitrant respiratory tract infections. This is followed by a summary of recent advances in design of inhalable nanoparticle-based drug delivery systems that overcome the biological barriers and increase drug bioavailability. Finally, challenges for the translation from exploratory laboratory research to clinical application are also discussed and potential solutions proposed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Bacterial infections are an imminent global healthcare threat evolving from rapidly advancing bacterial defence mechanisms that antibiotics fail to overcome. Antibiotics have been designed for systemic administration to target planktonic bacteria, leading to difficulties in reaching the site of localized bacterial infection and an inability to overcome the biological, chemical and physical barriers of bacteria, including biofilms, intracellular infections and antimicrobial resistance. The amphiphilic, biomimetic and antimicrobial properties of lipids provide a promising toolbox to innovate and advance antimicrobial therapies, overcoming the barriers presented by bacteria in order to directly and effectively treat recalcitrant infections. Nanoparticulate lipid-based drug delivery systems can enhance antibiotic permeation through the chemical and physical barriers of bacterial infections, as well as fuse with bacterial cell membranes, release antibiotics in response to bacteria and act synergistically with loaded antibiotics to enhance the total antimicrobial efficacy. This review explores the barriers presented by bacterial infections that pose bio-pharmaceutical challenges to antibiotics and how different structural and functional mechanisms of lipids can enhance antimicrobial therapies. Different nanoparticulate lipid-based systems are presented as valuable drug delivery systems to advance the efficacy of antibiotics, including liposomes, liquid crystalline nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers and lipid nanocarriers. In summary, liquid crystalline nanoparticles are emerging with the greatest potential for clinical applications and commercial success as an \"all-rounder\" advanced lipid-based antimicrobial therapy that overcomes the multiple biological, chemical and physical barriers of bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Exploring the structure-activity relationship (SAR) at the cationic part of arylthiazole antibiotics revealed hydrazine as an active moiety. The main objective of the study is to overcome the inherited toxicity associated with the free hydrazine. A series of hydrocarbon bridges was inserted in between the groups, to separate the two amino groups. Hence, the aminomethylpiperidine-containing analog 16 was identified as a new promising antibacterial agent with efficient antibacterial and pharmacokinetic profiles. Briefly, compound 16 outperformed vancomycin in terms of the antibacterial spectrum against vancomycin-resistant staphylococcal and enterococcal strains with minimum inhibitory concentrations (MICs) ranging from 2 to 4 μg/mL, which is a faster bactericidal mode of action, completely eradicating the high staphylococcal burden within 6-8 h, and it has a unique ability to completely clear intracellular staphylococci. In addition, the initial pharmacokinetic assessment confirmed the high metabolic stability of compound 16 (biological half-life >4 h); it had a good extravascular distribution and maintained a plasma concentration higher than the average MIC value for over 12 h. Moreover, compound 16 significantly reduced MRSA burden in an in vivo MRSA skin infection mouse experiment. These attributes collectively suggest that compound 16 is a good therapeutic candidate for invasive staphylococcal and enterococcal infections. From a mechanistic point of view, compound 16 inhibited undecaprenyl diphosphate phosphatase (UppP) with an IC50 value of 29 μM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    聚合物纳米载体(PNs)已被证明是治疗细胞内感染的有希望的替代方案。它们在细胞内递送抗微生物剂以达到适当的剂量水平并提高其治疗功效方面具有突出的性能。PNs提供了在到达组织的靶细胞之前防止不需要的药物相互作用和降解的机会,从而减少了微生物中耐药性的发展。使用PNs有可能减少剂量和不良副作用,提供更好的治疗方案的效率和有效性,特别是在具有高毒性的药物中,在生理环境中的低溶解度和低生物利用度。这篇综述概述了由不同聚合物前体制成的纳米颗粒,以及用于调节物理化学和形态特性以及表面化学的纳米制造平台的主要方法,以控制目标中的抗菌剂的释放。它强调了这些纳米系统的多功能性以及它们在提供抗微生物药物以治疗细胞内感染方面的挑战和机遇,并提到了纳米毒理学方面和未来前景。
    Polymeric nanocarriers (PNs) have demonstrated to be a promising alternative to treat intracellular infections. They have outstanding performance in delivering antimicrobials intracellularly to reach an adequate dose level and improve their therapeutic efficacy. PNs offer opportunities for preventing unwanted drug interactions and degradation before reaching the target cell of tissue and thus decreasing the development of resistance in microorganisms. The use of PNs has the potential to reduce the dose and adverse side effects, providing better efficiency and effectiveness of therapeutic regimens, especially in drugs having high toxicity, low solubility in the physiological environment and low bioavailability. This review provides an overview of nanoparticles made of different polymeric precursors and the main methodologies to nanofabricate platforms of tuned physicochemical and morphological properties and surface chemistry for controlled release of antimicrobials in the target. It highlights the versatility of these nanosystems and their challenges and opportunities to deliver antimicrobial drugs to treat intracellular infections and mentions nanotoxicology aspects and future outlooks.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    具有高亲脂性质的化合物通常与不良的物理化学性质有关,触发了许多偏离目标,通过临床试验的可能性较小。两种代谢稳定的苯基噻唑抗生素支架,具有明显的高亲脂性特征,一个带有烷氧基侧链,另一个带有炔基部分,通过在亲脂性尾部插入环胺来衍生化,目的是改善理化性质和整体药代动力学行为。只有具有4-或5-元环的炔基衍生物显示出显著的抗菌活性。含氮杂环丁烷的化合物8是最有效的,它显示出对15种多重耐药(MDR)-革兰氏阳性病原体的有效抗菌作用,包括金黄色葡萄球菌,肺炎链球菌,表皮葡萄球菌和肠球菌。化合物8还高度有效地清除99.7%的巨噬细胞内携带的细胞内甲氧西林抗性金黄色葡萄球菌(MRSA)。除了水溶性的显著增强,大鼠体内药代动力学研究表明,化合物8可以穿透肠道细胞并在15分钟内以治疗浓度到达血浆,并保持有效血浆浓度约12小时。主要潜在代谢物(化合物9)也具有作为具有有效抗生物膜活性的抗菌剂的活性。
    Compounds with high lipophilic properties are often associated with bad physicochemical properties, triggering many off-targets, and less likely to pass clinical trials. Two metabolically stable phenylthiazole antibiotic scaffolds having notable high lipophilic characters, one with alkoxy side chain and the other one with alkynyl moiety, were derivatized by inserting a cyclic amine at the lipophilic tail with the objective of improving physicochemical properties and the overall pharmacokinetic behavior. Only alkynyl derivatives with 4- or 5-membered rings showed remarkable antibacterial activity. The azetidine-containing compound 8 was the most effective and it revealed a potent antibacterial effect against 15 multi-drug resistant (MDR)-Gram positive pathogens including Staphylococcus aureus, Streptococcus pneumoniae, Staphylococcus epidermidis and enterococci. Compound 8 was also highly effective in clearing 99.7% of the intracellular methicillin-resistant S. aureus (MRSA) harbored inside macrophages. In addition to the remarkable enhancement in aqueous solubility, the in vivo pharmacokinetic study in rats indicated that compound 8 can penetrate gut cells and reach plasma at a therapeutic concentration within 15 min and maintain effective plasma concentration for around 12 h. Interestingly, the main potential metabolite (compound 9) was also active as an antibacterial agent with potent antibiofilm activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Infectious diseases remain a major burden in today\'s world, causing high mortality rates and significant economic losses, with >9 million deaths per year predicted by 2030. Invasion of host cells by intracellular bacteria poses treatment challenges due to the poor permeation of antimicrobials into the infected cells. To overcome these limitations, mesoporous silica nanoparticles (MSNP) loaded with the antibiotic rifampicin were investigated as a nanocarrier system for the treatment of intracellular bacterial infection with specific interest in the influence of particle size on treatment efficiency. An intracellular infection model was established using small colony variants (SCV) of S. aureus in macrophages to systemically evaluate the efficacy of rifampicin-loaded MSNP against the pathogen as compared to a rifampicin solution. As hypothesized, the superior uptake of MSNP by macrophages resulted in an enhanced treatment efficacy of the encapsulated rifampicin as compared to free antibiotic. This study provides a potential platform to improve the performance of currently available antibiotics against intracellular infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Increasing antibiotic resistance in pathogenic microorganisms has led to renewed interest in bacteriophage therapy in both humans and animals. A \"Trojan Horse\" approach utilizing liposome encapsulated phages may facilitate access to phagocytic cells infected with intracellular pathogens residing therein, e.g., to treat infections caused by Mycobacterium tuberculosis, Listeria, Salmonella, and Staphylococcus sp. Additionally, liposome encapsulated phages may adhere to and diffuse within mucosa harboring resistant bacteria which are challenges in treating respiratory and gastrointestinal infections. Orally delivered phages tend to have short residence times in the gastrointestinal tract due to clinical symptoms such as diarrhea; this may be addressed through mucoadhesion of liposomes. In the present study we have evaluated the use of a microfluidic based technique for the encapsulation of bacteriophages in liposomes having mean sizes between 100 and 300 nm. Encapsulation of two model phages was undertaken, an Escherichia coli T3 podovirus (size ~65 nm) and a myovirus Staphylococcus aureus phage K (capsid head ~80 nm and phage tail length ~200 nm). The yield of encapsulated T3 phages was 109 PFU/ml and for phage K was much lower at 105 PFU/ml. The encapsulation yield for E. coli T3 phages was affected by aggregation of T3 phages. S. aureus phage K was found to interact with the liposome lipid bilayer resulting in large numbers of phages bound to the outside of the formed liposomes instead of being trapped inside them. We were able to inactivate the liposome bound S. aureus K phages whilst retaining the activity of the encapsulated phages in order to estimate the yield of microfluidic encapsulation of large tailed phages. Previous published studies on phage encapsulation in liposomes may have overestimated the yield of encapsulated tailed phages. This overestimation may affect the efficacy of phage dose delivered at the site of infection. Externally bound phages would be inactivated in the stomach acid resulting in low doses of phages delivered at the site of infection further downstream in the gastrointestinal tract.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号