interferon antagonist

  • 文章类型: Journal Article
    在设计呼吸道合胞病毒(RSV)减毒活疫苗时,减毒突变可以通过生物选择或反向遗传操作开发,可能包括点突变,密码子和基因缺失,和基因组重排。减毒通常涉及减少病毒复制,由于对病毒结构和复制机制或拮抗宿主防御或引起疾病的病毒因子的直接影响。然而,减毒必须平衡减少的复制和免疫原性抗原表达。在本研究中,我们探索了一种新的方法来发现减毒突变。具体来说,我们使用蛋白质结构建模和计算方法来鉴定RSV非结构蛋白1(NS1)中的氨基酸取代,预测这些取代会导致不同水平的结构扰动.将预测会改变NS1蛋白结构的12种不同突变引入感染性病毒中,并在细胞培养物中分析对病毒mRNA和蛋白表达的影响。干扰素和细胞因子表达,和半胱天冬酶激活。我们发现使用基于结构的机器学习来预测降低NS1热力学稳定性的氨基酸取代会导致NS1功能的不同程度的损失。例如,包括减少多周期病毒复制的细胞有能力为I型干扰素,降低病毒mRNA和蛋白质的表达,和增加干扰素和细胞凋亡反应。
    When designing live-attenuated respiratory syncytial virus (RSV) vaccine candidates, attenuating mutations can be developed through biologic selection or reverse-genetic manipulation and may include point mutations, codon and gene deletions, and genome rearrangements. Attenuation typically involves the reduction in virus replication, due to direct effects on viral structural and replicative machinery or viral factors that antagonize host defense or cause disease. However, attenuation must balance reduced replication and immunogenic antigen expression. In the present study, we explored a new approach in order to discover attenuating mutations. Specifically, we used protein structure modeling and computational methods to identify amino acid substitutions in the RSV nonstructural protein 1 (NS1) predicted to cause various levels of structural perturbation. Twelve different mutations predicted to alter the NS1 protein structure were introduced into infectious virus and analyzed in cell culture for effects on viral mRNA and protein expression, interferon and cytokine expression, and caspase activation. We found the use of structure-based machine learning to predict amino acid substitutions that reduce the thermodynamic stability of NS1 resulted in various levels of loss of NS1 function, exemplified by effects including reduced multi-cycle viral replication in cells competent for type I interferon, reduced expression of viral mRNAs and proteins, and increased interferon and apoptosis responses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Viral protein 35 (VP35) of Ebola virus (EBOV) is a multifunctional protein that mainly acts as a viral polymerase cofactor and an interferon antagonist. VP35 interacts with the viral nucleoprotein (NP) and double-stranded RNA for viral RNA transcription/replication and inhibition of type I interferon (IFN) production, respectively. The C-terminal portion of VP35, which is termed the IFN-inhibitory domain (IID), is important for both functions. To further identify critical regions in this domain, we analyzed the physical properties of the surface of VP35 IID, focusing on hydrophobic patches, which are expected to be functional sites that are involved in interactions with other molecules. Based on the known structural information of VP35 IID, three hydrophobic patches were identified on its surface and their biological importance was investigated using minigenome and IFN-β promoter-reporter assays. Site-directed mutagenesis revealed that some of the amino acid substitutions that were predicted to disrupt the hydrophobicity of the patches significantly decreased the efficiency of viral genome replication/transcription due to reduced interaction with NP, suggesting that the hydrophobic patches might be critical for the formation of a replication complex through the interaction with NP. It was also found that the hydrophobic patches were involved in the IFN-inhibitory function of VP35. These results highlight the importance of hydrophobic patches on the surface of EBOV VP35 IID and also indicate that patch analysis is useful for the identification of amino acid residues that directly contribute to protein functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Viral interferon (IFN) antagonist proteins mediate evasion of IFN-mediated innate immunity and are often multifunctional, with distinct roles in viral replication. The Ebola virus IFN antagonist VP24 mediates nucleocapsid assembly, and inhibits IFN-activated signaling by preventing nuclear import of STAT1 via competitive binding to nuclear import receptors (karyopherins). Proteins of many viruses, including viruses with cytoplasmic replication cycles, interact with nuclear trafficking machinery to undergo nucleocytoplasmic transport, with key roles in pathogenesis; however, despite established karyopherin interaction, potential nuclear trafficking of VP24 has not been investigated. We find that inhibition of nuclear export pathways or overexpression of VP24-binding karyopherin results in nuclear localization of VP24. Molecular mapping indicates that cytoplasmic localization of VP24 depends on a CRM1-dependent nuclear export sequence at the VP24 C-terminus. Nuclear export is not required for STAT1 antagonism, consistent with competitive karyopherin binding being the principal antagonistic mechanism, while export mediates return of nuclear VP24 to the cytoplasm where replication/nucleocapsid assembly occurs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes an important disease in ruminants, with great economic losses. The infection can be also transmitted to humans; therefore, it is considered a major threat to both human and animal health. In a previous work, we described a novel RVFV variant selected in cell culture in the presence of the antiviral agent favipiravir that was highly attenuated in vivo. This variant displayed 24 amino acid substitutions in different viral proteins when compared to its parental viral strain, two of them located in the NSs protein that is known to be the major virulence factor of RVFV. By means of a reverse genetics system, in this work we have analyzed the effect that one of these substitutions, P82L, has in viral attenuation in vivo. Rescued viruses carrying this single amino acid change were clearly attenuated in BALB/c mice while their growth in an interferon (IFN)-competent cell line as well as the production of interferon beta (IFN-β) did not seem to be affected. However, the pattern of nuclear NSs accumulation was modified in cells infected with the mutant viruses. These results highlight the key role of the NSs protein in the modulation of viral infectivity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    In 2016, the Bunyavirales order was established by the International Committee on Taxonomy of Viruses (ICTV) to incorporate the increasing number of related viruses across 13 viral families. While diverse, four of the families (Peribunyaviridae, Nairoviridae, Hantaviridae, and Phenuiviridae) contain known human pathogens and share a similar tri-segmented, negative-sense RNA genomic organization. In addition to the nucleoprotein and envelope glycoproteins encoded by the small and medium segments, respectively, many of the viruses in these families also encode for non-structural (NS) NSs and NSm proteins. The NSs of Phenuiviridae is the most extensively studied as a host interferon antagonist, functioning through a variety of mechanisms seen throughout the other three families. In addition, functions impacting cellular apoptosis, chromatin organization, and transcriptional activities, to name a few, are possessed by NSs across the families. Peribunyaviridae, Nairoviridae, and Phenuiviridae also encode an NSm, although less extensively studied than NSs, that has roles in antagonizing immune responses, promoting viral assembly and infectivity, and even maintenance of infection in host mosquito vectors. Overall, the similar and divergent roles of NS proteins of these human pathogenic Bunyavirales are of particular interest in understanding disease progression, viral pathogenesis, and developing strategies for interventions and treatments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    山羊副流感病毒3(CPIV3)是一种新型的副粘病毒,分离自患有呼吸道疾病的山羊。目前,CPIV3感染的发病机制尚未完全明确。I型干扰素(IFN)是先天抗病毒反应的关键介质,由于许多病毒已经开发出规避IFN应答的策略,CPIV3是否或如何拮抗I型IFN抗病毒作用尚未被表征。这项研究观察到CPIV3对MDBK和山羊气管上皮(GTE)细胞模型的IFN-α治疗和拮抗IFN-α抗病毒反应具有抗性。Westernblot分析显示CPIV3感染降低了STAT1的表达和磷酸化,从而抑制GTE细胞的IFN-α信号转导。通过筛选和利用特异性单克隆抗体(mAb),三种CPIV3辅助蛋白C,在GTE细胞模型上的病毒感染过程中鉴定出V和D。辅助蛋白C和V,但不是蛋白质D,被鉴定为拮抗IFN-α抗病毒信号。此外,辅助蛋白C,但不是蛋白V,降低IFN-α驱动的磷酸化STAT1(pSTAT1)的水平,然后抑制STAT1信号。对PIV3辅助蛋白C的遗传变异分析发现了两个高度可变区(VR),与VR2(31-70aa)参与CPIV3辅助蛋白C劫持STAT1信号传导激活。以上数据表明,CPIV3能够通过降低STAT1的表达和活化来抑制IFN-α信号转导,辅助蛋白C,在免疫逃逸过程中起着至关重要的作用。
    The Caprine parainfluenza virus 3 (CPIV3) is a novel Paramyxovirus that is isolated from goats suffering from respiratory diseases. Presently, the pathogenesis of CPIV3 infection has not yet been fully characterized. The Type I interferon (IFN) is a key mediator of innate antiviral responses, as many viruses have developed strategies to circumvent IFN response, whether or how CPIV3 antagonizes type I IFN antiviral effects have not yet been characterized. This study observed that CPIV3 was resistant to IFN-α treatment and antagonized IFN-α antiviral responses on MDBK and goat tracheal epithelial (GTE) cell models. Western blot analysis showed that CPIV3 infection reduced STAT1 expression and phosphorylation, which inhibited IFN-α signal transduction on GTE cells. By screening and utilizing specific monoclonal antibodies (mAbs), three CPIV3 accessory proteins C, V and D were identified during the virus infection process on the GTE cell models. Accessory proteins C and V, but not protein D, was identified to antagonize IFN-α antiviral signaling. Furthermore, accessory protein C, but not protein V, reduced the level of IFN-α driven phosphorylated STAT1 (pSTAT1), and then inhibit STAT1 signaling. Genetic variation analysis to the PIV3 accessory protein C has found two highly variable regions (VR), with VR2 (31-70th aa) being involved in for the CPIV3 accessory protein C to hijack the STAT1 signaling activation. The above data indicated that CPIV3 is capable of inhibiting IFN-α signal transduction by reducing STAT1 expression and activation, and that the accessory protein C, plays vital roles in the immune escape process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    We report the generation of a full-length infectious cDNA clone for porcine deltacoronavirus strain USA/IL/2014/026. Similar to the parental strain, the infectious clone virus (icPDCoV) replicated efficiently in cell culture and caused mild clinical symptoms in piglets. To investigate putative viral interferon (IFN) antagonists, we generated two mutant viruses: a nonstructural protein 15 mutant virus that encodes a catalytically-inactive endoribonuclease (icEnUmut), and an accessory gene NS6-deletion virus in which the NS6 gene was replaced with the mNeonGreen sequence (icDelNS6/nG). By infecting PK1 cells with these recombinant PDCoVs, we found that icDelNS6/nG elicited similar levels of type I IFN responses as icPDCoV, however icEnUmut stimulated robust type I IFN responses, demonstrating that the deltacoronavirus endoribonuclease, but not NS6, functions as an IFN antagonist in PK1 cells. Collectively, the construction of a full-length infectious clone and the identification of an IFN-antagonistic endoribonuclease will aid in the development of live-attenuated deltacoronavirus vaccines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    冠状病毒(CoV)反复从野生动物宿主和受感染的人类和家畜动物中出现,导致具有显著发病率和死亡率的流行病。CoV感染各种器官,包括呼吸系统和肠道系统,例如新出现的严重急性呼吸道综合征冠状病毒2(SARS-CoV-2)。导致肠道疾病发展的病毒因子群仍然难以捉摸。这里,我们研究了CoV干扰素拮抗剂对肠道发病机制的贡献。利用肠道冠状病毒的感染性克隆,猪流行性腹泻病毒(icPEDV),我们产生了干扰素拮抗剂非结构蛋白1(nsp1)的非活性形式的病毒,nsp15和nsp16单独或组合到一个病毒称为icPEDV-mut4。与野生型icPEDV感染相比,干扰素反应性PK1细胞被这些病毒感染并产生更高水平的干扰素反应。icPEDV-mut4引起强烈的干扰素反应,并在PK1细胞中的复制严重受损。为了评估病毒的发病机制,用icPEDV或icPEDV-mut4感染仔猪。虽然感染icPEDV的仔猪表现出临床疾病,感染icPEDV-mut4的仔猪在感染后第2天没有临床症状,肠道病理正常。icPEDV-mut4在肠道中复制,通过检测粪便拭子中的病毒RNA,序列分析记录了输入菌株的遗传稳定性。重要的是,icPEDV-mut4感染引起IgG和对PEDV的中和抗体应答。这些结果鉴定nsp1、nsp15和nsp16为有助于猪中PEDV诱导的腹泻发展的毒力因子。灭活这些CoV干扰素拮抗剂是产生候选疫苗以预防疾病和肠道CoV传播的合理方法。包括SARS-CoV-2.重要性新兴冠状病毒,包括SARS-CoV-2和猪CoV,可以感染肠细胞,引起腹泻,被扔在粪便里.需要新的方法来了解肠道发病机理并开发疫苗和疗法以防止这些病毒的传播。这里,我们利用了肠道病毒的反向遗传系统,猪流行性腹泻病毒(PEDV),并概述了一种基因灭活高度保守的病毒因子的方法,这些病毒因子已知会限制宿主对感染的先天免疫反应。我们的报告显示,用三种病毒干扰素拮抗剂的非活性形式产生PEDV,非结构蛋白1、15和16可产生高度减毒的病毒,该病毒不会在动物中引起腹泻,并在病毒感染的动物中引起中和抗体反应。该策略可用于产生可预防肠道CoV疾病和粪便传播的减毒活疫苗候选物。包括SARS-CoV-2.
    Coronaviruses (CoVs) have repeatedly emerged from wildlife hosts and infected humans and livestock animals to cause epidemics with significant morbidity and mortality. CoVs infect various organs, including respiratory and enteric systems, as exemplified by newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The constellation of viral factors that contribute to developing enteric disease remains elusive. Here, we investigated CoV interferon antagonists for their contribution to enteric pathogenesis. Using an infectious clone of an enteric CoV, porcine epidemic diarrhea virus (icPEDV), we generated viruses with inactive versions of interferon antagonist nonstructural protein 1 (nsp1), nsp15, and nsp16 individually or combined into one virus designated icPEDV-mut4. Interferon-responsive PK1 cells were infected with these viruses and produced higher levels of interferon responses than were seen with wild-type icPEDV infection. icPEDV-mut4 elicited robust interferon responses and was severely impaired for replication in PK1 cells. To evaluate viral pathogenesis, piglets were infected with either icPEDV or icPEDV-mut4. While the icPEDV-infected piglets exhibited clinical disease, the icPEDV-mut4-infected piglets showed no clinical symptoms and exhibited normal intestinal pathology at day 2 postinfection. icPEDV-mut4 replicated in the intestinal tract, as revealed by detection of viral RNA in fecal swabs, with sequence analysis documenting genetic stability of the input strain. Importantly, icPEDV-mut4 infection elicited IgG and neutralizing antibody responses to PEDV. These results identify nsp1, nsp15, and nsp16 as virulence factors that contribute to the development of PEDV-induced diarrhea in swine. Inactivation of these CoV interferon antagonists is a rational approach for generating candidate vaccines to prevent disease and spread of enteric CoVs, including SARS-CoV-2.IMPORTANCE Emerging coronaviruses, including SARS-CoV-2 and porcine CoVs, can infect enterocytes, cause diarrhea, and be shed in the feces. New approaches are needed to understand enteric pathogenesis and to develop vaccines and therapeutics to prevent the spread of these viruses. Here, we exploited a reverse genetic system for an enteric CoV, porcine epidemic diarrhea virus (PEDV), and outline an approach of genetically inactivating highly conserved viral factors known to limit the host innate immune response to infection. Our report reveals that generating PEDV with inactive versions of three viral interferon antagonists, nonstructural proteins 1, 15, and 16, results in a highly attenuated virus that does not cause diarrhea in animals and elicits a neutralizing antibody response in virus-infected animals. This strategy may be useful for generating live attenuated vaccine candidates that prevent disease and fecal spread of enteric CoVs, including SARS-CoV-2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The Coronavirus disease 2019 (COVID-19), which is caused by the novel SARS-CoV-2 virus, is now causing a tremendous global health concern. Since its first appearance in December 2019, the outbreak has already caused over 5.8 million infections worldwide (till 29 May 2020), with more than 0.35 million deaths. Early virus-mediated immune suppression is believed to be one of the unique characteristics of SARS-CoV-2 infection and contributes at least partially to the viral pathogenesis. In this study, we identified the key viral interferon antagonists of SARS-CoV-2 and compared them with two well-characterized SARS-CoV interferon antagonists, PLpro and orf6. Here we demonstrated that the SARS-CoV-2 nsp13, nsp14, nsp15 and orf6, but not the unique orf8, could potently suppress primary interferon production and interferon signalling. Although SARS-CoV PLpro has been well-characterized for its potent interferon-antagonizing, deubiquitinase and protease activities, SARS-CoV-2 PLpro, despite sharing high amino acid sequence similarity with SARS-CoV, loses both interferon-antagonising and deubiquitinase activities. Among the 27 viral proteins, SARS-CoV-2 orf6 demonstrated the strongest suppression on both primary interferon production and interferon signalling. Orf6-deleted SARS-CoV-2 may be considered for the development of intranasal live-but-attenuated vaccine against COVID-19.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Sindbis virus (SINV) produces the small membrane protein TF from the 6K gene via a (-1) programmed ribosomal frameshifting. While several groups have shown that TF-deficient virus exhibits reduced virulence, the mechanism(s) by which this occurs remain unknown. Here, we demonstrate a role for TF in antagonizing the host interferon response. Using wild-type and type 1 interferon receptor-deficient mice and primary cells derived from these animals, we show that TF controls the induction of the host interferon response at early times during infection. Loss of TF production leads to elevated interferon and a concurrent reduction in viral loads with a loss of pathogenicity. Palmitoylation of TF has been shown to be important for particle assembly and morphology. We find that palmitoylation of TF also contributes to the ability of TF to antagonize host interferon responses as dysregulated palmitoylation of TF reduces virulence in a manner similar to loss of TF.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号