glioblastoma therapy

  • 文章类型: Journal Article
    多形性胶质母细胞瘤(GBM)被认为是最致命的脑癌。传统疗法之后患者生存结果不佳,因此,新的和更有效的治疗策略是必须解决这一祸害。基因治疗已成为癌症治疗中令人兴奋和创新的工具。其与化疗的组合显著改善了治疗结果。与此相符,我们的团队开发了替莫唑胺-转铁蛋白(Tf)肽(WRAP5)/p53基因纳米复合物,该复合物与非癌细胞和斑马鱼模型具有生物相容性,能够有效靶向SNB19和U373胶质瘤细胞系并内化.这些细胞的转染,由配制的肽-药物/基因复合物介导,导致p53表达。抗癌药物与p53补充剂在癌细胞中的联合作用增强了细胞毒性,通过定量caspase-3活性与凋亡激活相关。此外,caspase-9水平升高表明细胞凋亡的内在途径或线粒体途径参与其中。存在进一步证明了这一假设,在神经胶质瘤细胞中,Bax蛋白过表达-该凋亡途径的核心调节因子。我们的发现证明了肽TMZ/p53共递送复合物用于细胞转染的巨大潜力,p53表达,和凋亡诱导,对胶质母细胞瘤具有有希望的治疗价值。
    Glioblastoma multiform (GBM) is considered the deadliest brain cancer. Conventional therapies are followed by poor patient survival outcomes, so novel and more efficacious therapeutic strategies are imperative to tackle this scourge. Gene therapy has emerged as an exciting and innovative tool in cancer therapy. Its combination with chemotherapy has significantly improved therapeutic outcomes. In line with this, our team has developed temozolomide-transferrin (Tf) peptide (WRAP5)/p53 gene nanometric complexes that were revealed to be biocompatible with non-cancerous cells and in a zebrafish model and were able to efficiently target and internalize into SNB19 and U373 glioma cell lines. The transfection of these cells, mediated by the formulated peptide-drug/gene complexes, resulted in p53 expression. The combined action of the anticancer drug with p53 supplementation in cancer cells enhances cytotoxicity, which was correlated to apoptosis activation through quantification of caspase-3 activity. In addition, increased caspase-9 levels revealed that the intrinsic or mitochondrial pathway of apoptosis was implicated. This assumption was further evidenced by the presence, in glioma cells, of Bax protein overexpression-a core regulator of this apoptotic pathway. Our findings demonstrated the great potential of peptide TMZ/p53 co-delivery complexes for cellular transfection, p53 expression, and apoptosis induction, holding promising therapeutic value toward glioblastoma.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    高血管化的成胶质细胞瘤对于抗血管生成是天然敏感的,但是遭受短暂的脉管系统正常化的低功效。在这项研究中,通过敲除信号转导和转录激活因子3(STAT3),合成脂质-聚合物纳米颗粒以执行分隔的Cas9和sgRNA递送,从而实现永久性血管编辑策略.苯基硼酸支化阳离子聚合物设计用于静电凝聚sgRNA(内室)和贴片Cas9(外室),然后通过脂质体杂交与血管肽-2修饰进行血脑屏障(BBB)渗透。脂质-聚合物纳米粒可以在静脉给药后2小时内到达胶质母细胞瘤,和缺氧在肿瘤细胞触发电荷消除和降解的阳离子聚合物的爆发释放的Cas9和sgRNA,伴随着即时Cas9RNP组装,产量≈50%STAT3敲除。下游血管内皮生长因子(VEGF)的下调重新编程血管正常化,以改善免疫浸润,与白细胞介素-6(IL-6)和白细胞介素-10(IL-10)减少合作以产生抗胶质母细胞瘤反应。总的来说,用于分隔Cas9/sgRNA递送的组合组装为胶质母细胞瘤治疗提供了潜在的解决方案。
    Hypervascularized glioblastoma is naturally sensitive to anti-angiogenesis but suffers from low efficacy of transient vasculature normalization. In this study, a lipid-polymer nanoparticle is synthesized to execute compartmentalized Cas9 and sgRNA delivery for a permanent vasculature editing strategy by knocking out the signal transducer and activator of transcription 3 (STAT3). The phenylboronic acid branched cationic polymer is designed to condense sgRNA electrostatically (inner compartment) and patch Cas9 coordinatively (outer compartment), followed by liposomal hybridization with angiopep-2 decoration for blood-brain barrier (BBB) penetration. The lipid-polymer nanoparticles can reach glioblastoma within 2 h post intravenous administration, and hypoxia in tumor cells triggers charge-elimination and degradation of the cationic polymer for burst release of Cas9 and sgRNA, accompanied by instant Cas9 RNP assembly, yielding ≈50% STAT3 knockout. The downregulation of downstream vascular endothelial growth factor (VEGF) reprograms vasculature normalization to improve immune infiltration, collaborating with interleukin-6 (IL-6) and interleukin-10 (IL-10) reduction to develop anti-glioblastoma responses. Collectively, the combinational assembly for compartmentalized Cas9/sgRNA delivery provides a potential solution in glioblastoma therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    最近,FDA批准的纳米氧化铁,阿魏酚,已发现可增强药物抗坏血酸(AscH-)治疗胶质母细胞瘤的功效,如AscH-还原纳米颗粒核中的Fe3+位点。考虑到T2*弛豫映射的铁氧化态特异性,这项研究旨在研究T2*松弛监测AscH对阿魏酚的体外治疗增强作用的能力。本研究采用体外胶质母细胞瘤MRI模型系统来研究阿魏酚与T2*作图的化学相互作用。使用脂质体促进阿魏酚内化并评估细胞内与细胞外化学。体外T2*作图成功地检测到了AscH介导的阿鲁木糖醇的减少(单独的FMX为25.6ms,而2.8ms)。T2*弛豫技术确定了胶质母细胞瘤细胞中AscH-从阿魏酚中释放Fe2。然而,阿魏酚的高铁含量限制了T2*区分AscH-对阿魏酚的外部和内部还原的能力(对于外部FMX,ΔT2*=839%,对于内部FMX还原,ΔT2*=11212%)。值得注意的是,阿魏酚的内在化显着增强了其促进AscH毒性的能力(细胞外FMX的剂量增强比=1.16与细胞内FMX的1.54)。这些数据为基于MR的阿魏酚和AscH疗法在胶质母细胞瘤管理中的纳米热学应用提供了有价值的见解。未来的发展努力,例如FMX表面修改,可能有必要进一步加强这种方法。
    Recently, the FDA-approved iron oxide nanoparticle, ferumoxytol, has been found to enhance the efficacy of pharmacological ascorbate (AscH-) in treating glioblastoma, as AscH- reduces the Fe3+ sites in the nanoparticle core. Given the iron oxidation state specificity of T2* relaxation mapping, this study aims to investigate the ability of T2* relaxation to monitor the reduction of ferumoxytol by AscH- with respect to its in vitro therapeutic enhancement. This study employed an in vitro glioblastoma MRI model system to investigate the chemical interaction of ferumoxytol with T2* mapping. Lipofectamine was utilized to facilitate ferumoxytol internalization and assess intracellular versus extracellular chemistry. In vitro T2* mapping successfully detected an AscH--mediated reduction of ferumoxytol (25.6 ms versus 2.8 ms for FMX alone). The T2* relaxation technique identified the release of Fe2+ from ferumoxytol by AscH- in glioblastoma cells. However, the high iron content of ferumoxytol limited T2* ability to differentiate between the external and internal reduction of ferumoxytol by AscH- (ΔT2* = +839% for external FMX and +1112% for internal FMX reduction). Notably, the internalization of ferumoxytol significantly enhances its ability to promote AscH- toxicity (dose enhancement ratio for extracellular FMX = 1.16 versus 1.54 for intracellular FMX). These data provide valuable insights into the MR-based nanotheranostic application of ferumoxytol and AscH- therapy for glioblastoma management. Future developmental efforts, such as FMX surface modifications, may be warranted to enhance this approach further.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Case Reports
    多形性胶质母细胞瘤(GBM)是一种侵袭性原发性脑肿瘤,主要影响成人,儿童病例极为罕见。大体全切除,随后放疗和替莫唑胺,目前提供最大的整体生存率,是青少年GBM治疗的支柱。最大限度的手术切除可见的肿瘤块已被证明具有积极的预后效果,但是,对于儿童GBM中生长的大脑的辐射担忧和不同化疗方案的不一致结果使得年轻患者的治疗选择具有挑战性.这里,我们报道了一例11岁女性儿童的GBM病例,由于肿瘤的快速生长,患者出现了严重的神经功能缺损和临床恶化.
    Glioblastoma multiforme (GBM) is an aggressive primary brain tumor that primarily affects adults, with cases in children being extremely rare. Gross total resection with subsequent irradiation and temozolomide, currently delivering the greatest overall survival, is the mainstay of therapy for juvenile GBM. Maximal surgical excision of the visible tumor mass has been shown to have a positive prognostic effect, but radiation concerns for growing brains and inconsistent results from different chemotherapy regimens in pediatric GBM make treatment choices for young patients challenging. Here, we report a case of GBM in an 11-year-old female child who presented with a dramatic presentation of neurologic deficits and clinical worsening due to rapid tumor growth.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    多形性胶质母细胞瘤(GBM)是一种原发性脑肿瘤,以其短的生存期而闻名。通常从诊断到死亡14-18个月。由于强大的血脑屏障等因素,管理GBM构成了重大挑战,GBM内的免疫抑制状况,以及外科手术的复杂性.目前,GBM的典型治疗方法是结合外科手术,放射治疗,和使用替莫唑胺的化疗。不幸的是,这种常规方法在显著延长GBM患者的生命方面尚未被证明是有效的.因此,研究人员正在探索GBM管理的替代方法。近年来受到关注的一个有希望的途径是免疫疗法。这种方法已经成功治疗了癌症类型,如非小细胞肺癌和血液相关恶性肿瘤。目前正在研究GBM治疗的各种免疫治疗策略,包括检查点抑制剂,疫苗,嵌合抗原受体(CAR)T细胞疗法,和溶瘤病毒。全面回顾了过去十年进行的26项高质量研究,涉及对PubMed和GoogleScholar等数据库的彻底搜索,已经进行了。这篇综述的结果表明,虽然免疫治疗策略显示出希望,它们在GBM治疗的实际应用中面临着巨大的局限性和挑战。这项研究强调了结合不同方法的重要性,为个别患者定制治疗方法,以及正在进行的研究努力,以改善GBM患者的前景。
    Glioblastoma multiforme (GBM) is a primary brain tumor known for its short survival time, typically 14-18 months from diagnosis to fatality. Managing GBM poses significant challenges due to factors like the formidable blood-brain barrier, the immunosuppressive conditions within GBM, and the intricacies of surgical procedures. Currently, the typical treatment for GBM combines surgical procedures, radiation therapy, and chemotherapy using temozolomide. Unfortunately, this conventional approach has not proven effective in substantially extending the lives of GBM patients. Consequently, researchers are exploring alternative methods for GBM management. One promising avenue receiving attention in recent years is immunotherapy. This approach has successfully treated cancer types like non-small cell lung cancer and blood-related malignancies. Various immunotherapeutic strategies are currently under investigation for GBM treatment, including checkpoint inhibitors, vaccines, chimeric antigen receptor (CAR) T-cell therapy, and oncolytic viruses. A comprehensive review of 26 high-quality studies conducted over the past decade, involving thorough searches of databases such as PubMed and Google Scholar, has been conducted. The findings from this review suggest that while immunotherapeutic strategies show promise, they face significant limitations and challenges in practical application for GBM treatment. The study emphasizes the importance of combining diverse approaches, customizing treatments for individual patients, and ongoing research efforts to improve GBM patients\' outlook.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    多形性胶质母细胞瘤(GBM)是成人中最致命的原发性脑肿瘤,具有高度侵入性和治疗抗性。甲萘醌和抗坏血酸(AAMD)的组合在体外具有很强的ROS介导的抗GBM活性。本研究的目的是通过调节Akt和c-Jun氨基末端激酶(JNK)的活性来提高AA+MD抗GBM潜能,在GBM发育中具有重要作用的分子。Akt和JNK调节对U251人胶质母细胞瘤细胞中AA+MD毒性的影响通过细胞活力测定来评估,流式细胞术,RNA干扰和质粒过表达,和免疫印迹分析。AA+MD诱导严重的氧化应激,Akt磷酸化的早期增加,随后是其强烈的抑制作用,持续的JNK激活,U251细胞死亡。小分子Akt激酶抑制剂10-DEBC增强,虽然药理和遗传Akt激活减少,AA+MD诱导的毒性。10-DEBC对U251细胞死亡的增强作用与组合诱导的自噬通量的增加相关,并通过遗传自噬沉默而被废除。此外,药理学JNK抑制剂SP600125增强了对U251细胞的联合毒性,与ROS积累增加有关的效果。这些结果表明,小Akt和JNK激酶抑制剂通过自噬增强和放大有害的ROS水平显著增强AA+MD抗GBM作用。
    Glioblastoma multiforme (GBM) is the most lethal primary brain tumor in adults, characterized by a highly invasive nature and therapy resistance. Combination of menadione and ascorbic acid (AA+MD) exerts strong ROS-mediated anti-GBM activity in vitro. The objective of this study was to improve AA+MD anti-GBM potential by modulating the activity of Akt and c-Jun N-terminal kinase (JNK), molecules with an important role in GBM development. The effects of Akt and JNK modulation on AA+MD toxicity in U251 human glioblastoma cells were assessed by cell viability assays, flow cytometry, RNA interference and plasmid overexpression, and immunoblot analysis. The AA+MD induced severe oxidative stress, an early increase in Akt phosphorylation followed by its strong inhibition, persistent JNK activation, and U251 cell death. Small molecule Akt kinase inhibitor 10-DEBC enhanced, while pharmacological and genetic Akt activation decreased, AA+MD-induced toxicity. The U251 cell death potentiation by 10-DEBC correlated with an increase in the combination-induced autophagic flux and was abolished by genetic autophagy silencing. Additionally, pharmacological JNK inhibitor SP600125 augmented combination toxicity toward U251 cells, an effect linked with increased ROS accumulation. These results indicate that small Akt and JNK kinase inhibitors significantly enhance AA+MD anti-GBM effects by autophagy potentiation and amplifying deleterious ROS levels.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:胶质母细胞瘤患者通常对替莫唑胺化疗产生耐药性。缺氧,支持化疗抵抗,有利于胶质母细胞瘤干细胞(GSC)的扩增,导致肿瘤复发。因为鞘脂代谢失调,胶质母细胞瘤组织含有高水平的促存活鞘氨醇-1-磷酸和低水平的促凋亡神经酰胺。后者可以通过在胶质母细胞瘤中过表达的鞘氨醇激酶(SK)1代谢为鞘氨醇-1-磷酸。小分子SKI-II抑制SK和二氢神经酰胺去饱和酶1,其将二氢神经酰胺转化为神经酰胺。我们先前报道了SKI-II联合替莫唑胺诱导半胱天冬酶依赖性细胞死亡,在常氧中,二氢鞘脂积累和自噬。在本研究中,我们研究了替莫唑胺和SKI-II低剂量联合在常氧和缺氧条件下对胶质母细胞瘤细胞和患者来源的GCSs的影响.
    方法:用Chou-Talalay组合指数法分析药物协同作用。用磺酰罗丹明B比色测定法测定每种药物的剂量-效应曲线。通过免疫荧光分析细胞死亡机制和自噬,流式细胞术和蛋白质印迹;鞘脂代谢改变通过质谱和基因表达分析。使用极端有限稀释测定和使用3D球体模型对胶质母细胞瘤细胞的侵袭来确定GSC自我更新能力。
    结果:缺氧条件下胶质母细胞瘤细胞对替莫唑胺的耐药性增加。然而,替莫唑胺(48µM)与SKI-II(2.66µM)的组合协同抑制胶质母细胞瘤细胞生长,并相对于缺氧下的单一治疗增强胶质母细胞瘤细胞死亡。这种低剂量组合不会诱导双氢鞘脂的积累,而是神经酰胺及其代谢物的减少。它诱导氧化和内质网应激,并引发不依赖caspase的细胞死亡。它损害了替莫唑胺抗性GSC的自我更新能力,尤其是在缺氧的情况下.此外,它减少了胶质母细胞瘤细胞球体的侵袭。
    结论:这项体外研究为鞘脂代谢和侵袭之间的联系提供了新的见解,癌症的标志,和癌症干细胞,癌症的关键驱动因素。它证明了将鞘脂代谢的调节与一线药物替莫唑胺结合在一起的方法的治疗潜力,可以通过减少缺氧诱导的对化疗的抗性以及靶向分化和干胶质母细胞瘤细胞来克服肿瘤生长和复发。
    BACKGROUND: Glioblastoma patients commonly develop resistance to temozolomide chemotherapy. Hypoxia, which supports chemotherapy resistance, favors the expansion of glioblastoma stem cells (GSC), contributing to tumor relapse. Because of a deregulated sphingolipid metabolism, glioblastoma tissues contain high levels of the pro-survival sphingosine-1-phosphate and low levels of the pro-apoptotic ceramide. The latter can be metabolized to sphingosine-1-phosphate by sphingosine kinase (SK) 1 that is overexpressed in glioblastoma. The small molecule SKI-II inhibits SK and dihydroceramide desaturase 1, which converts dihydroceramide to ceramide. We previously reported that SKI-II combined with temozolomide induces caspase-dependent cell death, preceded by dihydrosphingolipids accumulation and autophagy in normoxia. In the present study, we investigated the effects of a low-dose combination of temozolomide and SKI-II under normoxia and hypoxia in glioblastoma cells and patient-derived GCSs.
    METHODS: Drug synergism was analyzed with the Chou-Talalay Combination Index method. Dose-effect curves of each drug were determined with the Sulforhodamine B colorimetric assay. Cell death mechanisms and autophagy were analyzed by immunofluorescence, flow cytometry and western blot; sphingolipid metabolism alterations by mass spectrometry and gene expression analysis. GSCs self-renewal capacity was determined using extreme limiting dilution assays and invasion of glioblastoma cells using a 3D spheroid model.
    RESULTS: Temozolomide resistance of glioblastoma cells was increased under hypoxia. However, combination of temozolomide (48 µM) with SKI-II (2.66 µM) synergistically inhibited glioblastoma cell growth and potentiated glioblastoma cell death relative to single treatments under hypoxia. This low-dose combination did not induce dihydrosphingolipids accumulation, but a decrease in ceramide and its metabolites. It induced oxidative and endoplasmic reticulum stress and triggered caspase-independent cell death. It impaired the self-renewal capacity of temozolomide-resistant GSCs, especially under hypoxia. Furthermore, it decreased invasion of glioblastoma cell spheroids.
    CONCLUSIONS: This in vitro study provides novel insights on the links between sphingolipid metabolism and invasion, a hallmark of cancer, and cancer stem cells, key drivers of cancer. It demonstrates the therapeutic potential of approaches that combine modulation of sphingolipid metabolism with first-line agent temozolomide in overcoming tumor growth and relapse by reducing hypoxia-induced resistance to chemotherapy and by targeting both differentiated and stem glioblastoma cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Case Reports
    多形性胶质母细胞瘤(IDH野生型)是星形细胞起源的侵袭性胶质肿瘤(WHO4级),中位生存期为两年。寿命超过三年的患者被认为是长期幸存者。在这项研究中,我们介绍了一个已知的1型神经纤维瘤病病例的长期幸存者,该病例在14岁时发展为巨细胞型GBM,现在病人,在28岁时,已经超过14年没有癌症。
    Glioblastoma multiforme (IDH wild type) is an aggressive glial tumor of astrocytic origin (WHO-grade 4) with a two-year median survival period. Patients who live more than three years are considered as long survivors. In this study, we present a long survivor of a known case of neurofibromatosis type 1 who developed GBM of the giant cell type at age 14 years, and now the patient, at age 28, has been cancer-free for more than 14 years.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胶质母细胞瘤患者的通用化学疗法会导致化学耐药性,并通过创建难以通过单一药物治疗方法解决的免疫抑制肿瘤微环境来进一步限制免疫细胞。这里,这项工作通过将化疗药物替莫唑胺(TMZ)和一氧化氮(NO)前药JS-K与鞘氨醇-1-磷酸分子(S1P)共同负载在表面来设计混合载药纳米脂质体。S1P-S1P受体轴赋予纳米脂质体快速靶向和溶酶体逃逸能力。然后,在神经胶质瘤微环境中,JS-K释放后微调的TMZ释放和NO气体产生通过抑制细胞自噬以及诱导线粒体功能障碍来降低化学耐药性并增加肿瘤免疫原性。RNA测序分析表明,NO气体的产生重新编程神经胶质瘤微环境免疫和炎症相关途径。阳性免疫应答又有效地激活化疗的增强功效。因此,在一系列免疫抑制适应症中,NO气体产生的纳米脂质体在治疗“冷”肿瘤方面具有诱人的范式转变应用。
    Universal chemotherapy in glioblastoma patients causes chemoresistance and further limits immune cells by creating an immunosuppressive tumor microenvironment that are difficult to solve by single-drug therapeutic approaches. Here, this work designs hybrid drug-loaded nanoliposomes by co-loading the chemotherapeutic drug temozolomide (TMZ) and nitric oxide (NO) prodrug JS-K with sphingosine-1-phosphate molecules (S1P) on the surface. The S1P-S1P receptors axis endows nanoliposomes with rapid targeting and lysosomal escaping capability. Then, fine-tuned TMZ release and NO gas production following JS-K release in glioma microenvironment decrease chemoresistance and increase tumor immunogenicity through inhibiting the cellular autophagy as well as inducing mitochondrial dysfunction. RNA sequencing analysis demonstrates that the NO gas generation reprograms glioma microenvironment immune and inflammation-related pathways. The positive immune response in turn effectively activates the enhanced efficacy of chemotherapy. NO gas generated nanoliposomes thus have attractive paradigm-shifting applications in the treatment of \"cold\" tumors across a range of immunosuppressive indications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    天然化合物青蒿素是世界上使用最广泛的抗疟药。基于它的细胞毒性,它也用于抗癌治疗。青蒿素及其衍生物是破坏真核细胞中蛋白质的内过氧化物;它们的明确作用机制和宿主细胞靶标,然而,在很大程度上仍然难以捉摸。利用酵母和单倍体干细胞筛选,我们证明了单一的细胞通路,即卟啉(血红素)生物合成,是青蒿素的细胞毒性所必需的。卟啉产生的遗传或药理学调节足以改变其在真核细胞中的细胞毒性。使用人脑肿瘤发展的多个模型系统,如脑胶质母细胞瘤类器官,和患者来源的肿瘤球体,我们使用临床批准的卟啉增强剂和外科荧光标记5-氨基乙酰丙酸使癌细胞对二氢青蒿素敏感,5-ALA.在所有测试的模型系统中,青蒿素和5-ALA的联合治疗明显且特异性地杀死了脑肿瘤细胞,包括体内原位患者来源的异种移植物。这些数据揭示了青蒿素细胞毒性的关键分子途径和治疗不同脑肿瘤的敏化策略,包括耐药的人类胶质母细胞瘤。
    The natural compound Artemisinin is the most widely used antimalarial drug worldwide. Based on its cytotoxicity, it is also used for anticancer therapy. Artemisinin and its derivates are endoperoxides that damage proteins in eukaryotic cells; their definite mechanism of action and host cell targets, however, have remained largely elusive. Using yeast and haploid stem cell screening, we demonstrate that a single cellular pathway, namely porphyrin (heme) biosynthesis, is required for the cytotoxicity of Artemisinins. Genetic or pharmacological modulation of porphyrin production is sufficient to alter its cytotoxicity in eukaryotic cells. Using multiple model systems of human brain tumor development, such as cerebral glioblastoma organoids, and patient-derived tumor spheroids, we sensitize cancer cells to dihydroartemisinin using the clinically approved porphyrin enhancer and surgical fluorescence marker 5-aminolevulinic acid, 5-ALA. A combination treatment of Artemisinins and 5-ALA markedly and specifically killed brain tumor cells in all model systems tested, including orthotopic patient-derived xenografts in vivo. These data uncover the critical molecular pathway for Artemisinin cytotoxicity and a sensitization strategy to treat different brain tumors, including drug-resistant human glioblastomas.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号