genome plasticity

基因组可塑性
  • 文章类型: Journal Article
    在神经精神疾病(NPD)中记录的基因变体的绝对数量以及观察到的临床和分子异质性的程度可能是由于较小的一组基因组高阶改变对内源性或环境的反应引起的放大的下游效应压力。染色体常见脆性位点(CFS)与microRNAs功能相关,基因拷贝数变异(CNVs),DNA的亚显微缺失和复制,罕见的单核苷酸变异(SNV/SNPs),和小插入/删除(indel),以及染色体易位,基因重复,甲基化改变,microRNA和L1转座子活性,和3-D染色体拓扑特征。这些基因组结构特征已与大多数分离的报告中的各种NPD相关联,并且通常仅被视为具有潜在的感兴趣的候选基因的区域。建议使用由中央机制(“压力”)激活的更高级别的入口点(“脆弱性”和相关特征)来研究NPD遗传学,有可能统一该领域现有的大量不同观察结果。这种方法可以解释分布在受影响和未受影响的个体之间的基因发现的连续性,NPD表型和重叠合并症的聚类,广泛的临床和分子异质性,以及与某些其他医学疾病的联系。
    The sheer number of gene variants and the extent of the observed clinical and molecular heterogeneity recorded in neuropsychiatric disorders (NPDs) could be due to the magnified downstream effects initiated by a smaller group of genomic higher-order alterations in response to endogenous or environmental stress. Chromosomal common fragile sites (CFS) are functionally linked with microRNAs, gene copy number variants (CNVs), sub-microscopic deletions and duplications of DNA, rare single-nucleotide variants (SNVs/SNPs), and small insertions/deletions (indels), as well as chromosomal translocations, gene duplications, altered methylation, microRNA and L1 transposon activity, and 3-D chromosomal topology characteristics. These genomic structural features have been linked with various NPDs in mostly isolated reports and have usually only been viewed as areas harboring potential candidate genes of interest. The suggestion to use a higher level entry point (the \'fragilome\' and associated features) activated by a central mechanism (\'stress\') for studying NPD genetics has the potential to unify the existing vast number of different observations in this field. This approach may explain the continuum of gene findings distributed between affected and unaffected individuals, the clustering of NPD phenotypes and overlapping comorbidities, the extensive clinical and molecular heterogeneity, and the association with certain other medical disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    已经从患病的猫和马中分离出了费支原体,但是到目前为止,这个物种只有一个完全组装的基因组,从一匹马的孤立,已被定性。本研究旨在表征和比较来自三只家猫的四种临床分离株的完全组装的基因组。借助短读数和长读数测序方法组装。完成的基因组编码759个ORF的中值(范围743-777),并且与可用的同系来源参考菌株的基因组具有98.2%的中值平均核苷酸同一性。比较基因组分析显示发生了多个水平基因转移事件和显着的基因组重排。这导致了澳大利亚felid分离基因组中许多基因的获得或丢失,编码参与DNA转移的推定蛋白质,新陈代谢,DNA复制,宿主细胞相互作用和限制性修饰系统。此外,通过基因组分析在一个澳大利亚felidM.felis分离物中检测到一种新型支原体噬菌体,并使用冷冻透射电子显微镜进行可视化。这项研究强调了不同宿主环境中复杂的基因组动力学。此外,在这项工作中获得的序列将能够开发新的诊断工具,以及确定未来猫呼吸道疾病综合征的感染控制和治疗方案。
    Mycoplasma felis has been isolated from diseased cats and horses, but to date only a single fully assembled genome of this species, of an isolate from a horse, has been characterized. This study aimed to characterize and compare the completely assembled genomes of four clinical isolates of M. felis from three domestic cats, assembled with the aid of short- and long-read sequencing methods. The completed genomes encoded a median of 759 ORFs (range 743-777) and had a median average nucleotide identity of 98.2 % with the genome of the available equid origin reference strain. Comparative genomic analysis revealed the occurrence of multiple horizontal gene transfer events and significant genome reassortment. This had resulted in the acquisition or loss of numerous genes within the Australian felid isolate genomes, encoding putative proteins involved in DNA transfer, metabolism, DNA replication, host cell interaction and restriction modification systems. Additionally, a novel mycoplasma phage was detected in one Australian felid M. felis isolate by genomic analysis and visualized using cryo-transmission electron microscopy. This study has highlighted the complex genomic dynamics in different host environments. Furthermore, the sequences obtained in this work will enable the development of new diagnostic tools, and identification of future infection control and treatment options for the respiratory disease complex in cats.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:比较基因组学的关键步骤是将开放阅读框分为功能上和进化上有意义的基因簇。基因聚类由于在原核生物中频繁发生的种内重复和水平基因转移而变得复杂。因此,基因聚类方法必须在识别多拷贝基因家族的垂直传播代表之间进行权衡,可以通过同质性保护来识别,并检索完整的物种级直系同源物。我们研究了采用同源性的含义,矫形学,或通过对125个原核pangenomes进行比较分析,作为基因簇的正式标准。
    结果:聚类标准影响pangenome功能表征,核心基因组推断,并在不同程度上重建祖先基因的含量。使用不同的聚类标准时,pangenome和核心基因组大小的物种估计变化相同的因素,无论聚类标准如何,都允许进行稳健的跨物种比较。然而,基因组可塑性和功能谱的跨物种比较受到聚类标准之间不一致的影响。这种不一致不仅是由可移动的遗传因素驱动的,还有参与防御的基因,次生代谢,和其他附件功能。在一些令人惊奇的特征中,归因于方法不一致的可变性甚至可以超过生态和系统发育变量的影响大小。
    结论:选择合适的基因聚类标准对于进行无偏全基因组分析至关重要。我们提供实用指南,根据研究目标和基因组组装的质量选择正确的方法,和基准数据集,以评估未来比较研究的稳健性和可重复性。
    A key step for comparative genomics is to group open reading frames into functionally and evolutionarily meaningful gene clusters. Gene clustering is complicated by intraspecific duplications and horizontal gene transfers that are frequent in prokaryotes. In consequence, gene clustering methods must deal with a trade-off between identifying vertically transmitted representatives of multicopy gene families, which are recognizable by synteny conservation, and retrieving complete sets of species-level orthologs. We studied the implications of adopting homology, orthology, or synteny conservation as formal criteria for gene clustering by performing comparative analyses of 125 prokaryotic pangenomes.
    Clustering criteria affect pangenome functional characterization, core genome inference, and reconstruction of ancestral gene content to different extents. Species-wise estimates of pangenome and core genome sizes change by the same factor when using different clustering criteria, allowing robust cross-species comparisons regardless of the clustering criterion. However, cross-species comparisons of genome plasticity and functional profiles are substantially affected by inconsistencies among clustering criteria. Such inconsistencies are driven not only by mobile genetic elements, but also by genes involved in defense, secondary metabolism, and other accessory functions. In some pangenome features, the variability attributed to methodological inconsistencies can even exceed the effect sizes of ecological and phylogenetic variables.
    Choosing an appropriate criterion for gene clustering is critical to conduct unbiased pangenome analyses. We provide practical guidelines to choose the right method depending on the research goals and the quality of genome assemblies, and a benchmarking dataset to assess the robustness and reproducibility of future comparative studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    已知嗜盐古细菌(haloarchea)表现出多个染色体,具有一个主要染色体和一个或几个较小的次级染色体或巨型质粒。Halorubrumlacusprofundi,研究冷适应的模型生物,表现出一个次级染色体和一个包含大量病毒防御机制的巨型质粒。我们分离出一种感染Hrr的病毒(Halorubrum尾病毒DL1,HRTV-DL1)。lacusprofundi,并对该病毒及其与Hrr的相互作用进行了深入的表征。lacusprofundi.在研究Hrr之间的病毒-宿主相互作用时。lacusprofundi和HRTV-DL1,我们发现使用的菌株(ACAM34_UNSW)丢失了整个大质粒和约38%的次级染色体。损失包括大多数病毒防御机制,使菌株对HRTV-DL1感染敏感,而类型菌株(ACAM34_DSMZ)似乎阻止病毒复制。将ACAM34_DSMZ型菌株的感染与实验室衍生菌株ACAM34_UNSW的感染进行比较,使我们能够确定宿主对病毒感染的反应,这些反应仅在病毒防御机制丧失后在ACAM34_UNSW中被激活。我们确定了两种S层蛋白之一是HRTV-DL1的主要受体,并得出结论,一种菌株中两种不同S层蛋白的存在在与病毒的军备竞赛中提供了强大的优势。此外,我们鉴定了可能参与防御病毒感染的真核蛋白质的古细菌同源物。
    Halophilic archaea (haloarchaea) are known to exhibit multiple chromosomes, with one main chromosome and one or several smaller secondary chromosomes or megaplasmids. Halorubrum lacusprofundi, a model organism for studying cold adaptation, exhibits one secondary chromosome and one megaplasmid that include a large arsenal of virus defense mechanisms. We isolated a virus (Halorubrum tailed virus DL1, HRTV-DL1) infecting Hrr. lacusprofundi, and present an in-depth characterization of the virus and its interactions with Hrr. lacusprofundi. While studying virus-host interactions between Hrr. lacusprofundi and HRTV-DL1, we uncover that the strain in use (ACAM34_UNSW) lost the entire megaplasmid and about 38% of the secondary chromosome. The loss included the majority of virus defense mechanisms, making the strain sensitive to HRTV-DL1 infection, while the type strain (ACAM34_DSMZ) appears to prevent virus replication. Comparing infection of the type strain ACAM34_DSMZ with infection of the laboratory derived strain ACAM34_UNSW allowed us to identify host responses to virus infection that were only activated in ACAM34_UNSW upon the loss of virus defense mechanisms. We identify one of two S-layer proteins as primary receptor for HRTV-DL1 and conclude that the presence of two different S-layer proteins in one strain provides a strong advantage in the arms race with viruses. Additionally, we identify archaeal homologs to eukaryotic proteins potentially being involved in the defense against virus infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    真菌物种具有动态的基因组,并且通常在响应胁迫时表现出基因组可塑性。这种基因组可塑性通常伴随着影响适应性和对压力的抵抗力的表型后果。真菌病原体在临床和农业环境中表现出基因组可塑性,并且通常在适应抗真菌药物期间。对人类健康构成重大挑战。因此,了解利率很重要,机制,以及大的基因组变化的影响。这篇综述讨论了多倍体的普遍性,非整倍体,和不同真菌物种的拷贝数变异,特别注意突出的真菌病原体和模型物种。我们还探讨了环境压力与基因组变化率之间的关系,并强调了基因型和表型变化的潜在机制。需要全面了解这些动态真菌基因组,以确定增加抗真菌药物抗性的新解决方案。微生物学年度评论的预期最终在线出版日期,第77卷是2023年9月。请参阅http://www。annualreviews.org/page/journal/pubdates的订正估计数。
    Fungal species have dynamic genomes and often exhibit genomic plasticity in response to stress. This genome plasticity often comes with phenotypic consequences that affect fitness and resistance to stress. Fungal pathogens exhibit genome plasticity in both clinical and agricultural settings and often during adaptation to antifungal drugs, posing significant challenges to human health. Therefore, it is important to understand the rates, mechanisms, and impact of large genomic changes. This review addresses the prevalence of polyploidy, aneuploidy, and copy number variation across diverse fungal species, with special attention to prominent fungal pathogens and model species. We also explore the relationship between environmental stress and rates of genomic changes and highlight the mechanisms underlying genotypic and phenotypic changes. A comprehensive understanding of these dynamic fungal genomes is needed to identify novel solutions for the increase in antifungal drug resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    放射异常球菌DY59(以前称为SwuensisDeinococusDY59)是一种从土壤中分离出的抗辐射细菌。从菌株DY59的3.5Mb基因组DNA序列(2014年12月),检测到包括IS1、IS4、IS5、IS66、IS630和IS701的6个IS家族的31个插入序列(IS)元件和5个未分类的IS元件。在用80和100mMH2O2诱导氧化应激后,IS4家族成员的独特ISs被主动转移到类胡萝卜素生物合成基因八氢烯去饱和酶(QR90_10400)中,导致非色素表型选择。因此,特定IS家族成员的这些活性转座是由80和100mMH2O2的氧化应激诱导的。此外,D.radiopugnansDY59对H2O2处理表现出极高的MIC值。为了解释这种现象,进行qRT-PCR以评估过氧化氢酶和三种LysR家族调节因子的表达水平。我们的发现表明,通过复制转座,通过H2O2处理,IS4家族的ISDrpg2和ISDrpg3元件被主动转座到植物烯去饱和酶基因中。然而,高H2O2抗性并非源于H2O2诱导的过氧化氢酶和LysR家族调节因子的表达。
    Deinococcus radiopugnans DY59 (formerly Deinococcus swuensis DY59) is a radiation-resistant bacterium isolated from soil. From the 3.5 Mb genomic DNA sequence of strain DY59 (December 2014), 31 insertion sequence (IS) elements of six IS families including IS1, IS4, IS5, IS66, IS630, and IS701 and five unclassified IS elements were detected. Upon induction of oxidative stress with 80 and 100 mM H2O2, the unique ISs of the IS4 family member were actively translocated into a carotenoid biosynthesis gene phytoene desaturase (QR90_10400), resulting in non-pigment phenotypic selection. Therefore, these active transpositions of a specific IS family member were induced by oxidative stress at 80 and 100 mM H2O2. Furthermore, D. radiopugnans DY59 exhibited extremely higher MIC values against H2O2 treatment. To explain this phenomenon, qRT-PCR was conducted to assess the expression levels of catalase and three LysR family regulators. Our findings indicated that the ISDrpg2 and ISDrpg3 elements of the IS4 family were actively transposed into the phytoene desaturase gene by H2O2 treatment via replicative transposition. However, high H2O2 resistance did not originate from H2O2-induced expression of catalase and LysR family regulators.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    UNASSIGNED:Naegleria属的自由生活变形虫属于主要的原生进化枝杂种,并普遍分布在土壤和淡水栖息地中。在所描述的47种Naegleria物种中,N.Fowleri是唯一对人类有致病性的,引起罕见但暴发性原发性阿米巴脑膜脑炎。一些Naegleria基因组序列是公开的,但是Naegleria多样性和在不同环境(包括人脑)中茁壮成长的能力的遗传基础仍不清楚。
    未经批准:此处,我们构建了高质量的Naegleria属pangenome,以获得这些变形虫编码的基因的综合目录。为此,我们首先测序,组装,并注释了六个新的Naegleria基因组。
    UNASSIGNED:基因组结构分析表明,Naegleria可能利用基因组可塑性特征,如倍性/非整倍体来调节它们在不同环境中的行为。当比较14个接近完整的基因组序列时,我们的结果估计理论上的Naegleriapangenome是一个封闭的基因组,有13,943个基因,包括3,563个核心基因和10,380个辅助基因。功能注释表明,大部分Naegleria基因与其他王国中已经描述的基因显示出显着的序列相似性,即动物和植物。比较分析强调了显著的基因组异质性,即使是密切相关的菌株,并证明Naegleria具有广泛的基因组变异性,反映在不同的代谢库中。如果Naegleria核心基因组富含代谢必需的保守基因,管理和生存过程,辅助基因组揭示了与应激反应有关的基因的存在,大分子修饰,细胞信号和免疫反应。常见报道的牛牛毒力相关基因存在于核心和辅助基因组中,这表明N.fowleri感染人脑的能力可能与其独特的物种特异性基因(主要是未知功能)和/或差异基因表达有关。Naegleria第一个pangenome的构建使我们能够摆脱单个参考基因组(不一定代表整个物种),并确定Naegleria进化中必不可少的和可有可无的基因,多样性和生物学,为进一步的基因组和后基因组研究铺平道路。
    UNASSIGNED: Free-living amoebae of the Naegleria genus belong to the major protist clade Heterolobosea and are ubiquitously distributed in soil and freshwater habitats. Of the 47 Naegleria species described, N. fowleri is the only one being pathogenic to humans, causing a rare but fulminant primary amoebic meningoencephalitis. Some Naegleria genome sequences are publicly available, but the genetic basis for Naegleria diversity and ability to thrive in diverse environments (including human brain) remains unclear.
    UNASSIGNED: Herein, we constructed a high-quality Naegleria genus pangenome to obtain a comprehensive catalog of genes encoded by these amoebae. For this, we first sequenced, assembled, and annotated six new Naegleria genomes.
    UNASSIGNED: Genome architecture analyses revealed that Naegleria may use genome plasticity features such as ploidy/aneuploidy to modulate their behavior in different environments. When comparing 14 near-to-complete genome sequences, our results estimated the theoretical Naegleria pangenome as a closed genome, with 13,943 genes, including 3,563 core and 10,380 accessory genes. The functional annotations revealed that a large fraction of Naegleria genes show significant sequence similarity with those already described in other kingdoms, namely Animalia and Plantae. Comparative analyses highlighted a remarkable genomic heterogeneity, even for closely related strains and demonstrate that Naegleria harbors extensive genome variability, reflected in different metabolic repertoires. If Naegleria core genome was enriched in conserved genes essential for metabolic, regulatory and survival processes, the accessory genome revealed the presence of genes involved in stress response, macromolecule modifications, cell signaling and immune response. Commonly reported N. fowleri virulence-associated genes were present in both core and accessory genomes, suggesting that N. fowleri\'s ability to infect human brain could be related to its unique species-specific genes (mostly of unknown function) and/or to differential gene expression. The construction of Naegleria first pangenome allowed us to move away from a single reference genome (that does not necessarily represent each species as a whole) and to identify essential and dispensable genes in Naegleria evolution, diversity and biology, paving the way for further genomic and post-genomic studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    利什曼原虫是导致利什曼病的动体病原体,如果不治疗,会导致衰弱和可能危及生命的感染。通常情况下,利什曼原虫主要在转录后调节其基因表达,这是由于其编码基因排列成多顺反子转录单位,可能包含100s功能无关的基因。然而,利什曼原虫能够对具有挑战性的环境进行快速和响应的基因表达变化,通常与基因组组成的动态变化相关,从染色体和基因拷贝数变异到染色体外DNA的产生和点突变的积累。通常,这些事件表明其他真核生物的基因组不稳定,与遗传异常相吻合,但对于利什曼原虫,利用这些基因组不稳定的产物可以提供可选择的底物,通过改变基因拷贝数来催化必要的基因表达变化。非正统的DNA复制,DNA修复,在利什曼原虫中,复制应激因子和DNA重复被认为是这种内在不稳定性的贡献者,但是利什曼原虫如何调节基因组可塑性以增强适应性,同时限制共扩增和共转录基因的毒性低或过表达尚不清楚。在这里,我们专注于新鲜,和详细的见解,提高我们对利什曼原虫基因组可塑性的理解。此外,我们讨论了可能规避多顺反子转录引起的调控问题的新兴模型和因子.最后,我们强调了我们理解利什曼原虫基因组可塑性的关键差距,并讨论了未来的研究来定义,在更高的分辨率,这些复杂的调控相互作用。
    Leishmania are kinetoplastid pathogens that cause leishmaniasis, a debilitating and potentially life-threatening infection if untreated. Unusually, Leishmania regulate their gene expression largely post-transcriptionally due to the arrangement of their coding genes into polycistronic transcription units that may contain 100s of functionally unrelated genes. Yet, Leishmania are capable of rapid and responsive changes in gene expression to challenging environments, often instead correlating with dynamic changes in their genome composition, ranging from chromosome and gene copy number variations to the generation of extrachromosomal DNA and the accumulation of point mutations. Typically, such events indicate genome instability in other eukaryotes, coinciding with genetic abnormalities, but for Leishmania, exploiting these products of genome instability can provide selectable substrates to catalyse necessary gene expression changes by modifying gene copy number. Unorthodox DNA replication, DNA repair, replication stress factors and DNA repeats are recognised in Leishmania as contributors to this intrinsic instability, but how Leishmania regulate genome plasticity to enhance fitness whilst limiting toxic under- or over-expression of co-amplified and co-transcribed genes is unclear. Herein, we focus on fresh, and detailed insights that improve our understanding of genome plasticity in Leishmania. Furthermore, we discuss emerging models and factors that potentially circumvent regulatory issues arising from polycistronic transcription. Lastly, we highlight key gaps in our understanding of Leishmania genome plasticity and discuss future studies to define, in higher resolution, these complex regulatory interactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    异染色质是一种抑制性染色质状态,在真核基因组的功能组织中起着关键作用。在真菌植物病原体中,宿主定殖所需的效应子基因倾向于与富含转座因子的基因组异色区域相关。已经提出,在没有宿主和动态染色质重塑的情况下,异染色质环境使效应子基因沉默,从而促进了它们在感染过程中的表达。在这里,我们在关键小麦病原体的背景下讨论这个模型,ZymoseptoriaTrartici.我们涵盖了在Z.tritici中异色组蛋白翻译后修饰的沉积和识别方面的进展,以及异染色质在控制基因组可塑性和毒力中的作用。
    Heterochromatin is a repressive chromatin state that plays key roles in the functional organisation of eukaryotic genomes. In fungal plant pathogens, effector genes that are required for host colonization tend to be associated with heterochromatic regions of the genome that are enriched with transposable elements. It has been proposed that the heterochromatin environment silences effector genes in the absence of host and dynamic chromatin remodelling facilitates their expression during infection. Here we discuss this model in the context of the key wheat pathogen, Zymoseptoria tritici. We cover progress in understanding the deposition and recognition of heterochromatic histone post translational modifications in Z. tritici and the role that heterochromatin plays in control of genome plasticity and virulence.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号