cell wall integrity

细胞壁完整性
  • 文章类型: Journal Article
    细胞壁是抵御外界逆境的第一道屏障,在维持真菌正常生理功能方面发挥着重要作用。以前,我们报道了一种核小体组装蛋白,MoNap1,在稻瘟病菌中,在细胞壁完整性(CWI)中起作用,应激反应,和致病性。此外,MoNap1负调控MGG_03970编码的MoSMI1的表达。这里,我们证明MoSMI1的缺失导致了一个显著的贴壁功能缺陷,CWI,细胞形态学,和致病性。进一步的研究表明,MoSmi1与MoOsm1和MoMps1相互作用,并影响MoOsm1,MoMps1和MoPmk1的磷酸化水平,这表明MoSmi1通过介导米曲霉中的丝裂原活化蛋白激酶(MAPK)信号通路来调节生物学功能。此外,转录组数据显示,MoSmi1调节米曲霉的许多感染相关过程,如膜相关途径和氧化还原过程。总之,我们的研究表明,MoSmi1通过介导MAPK通路调节CWI,从而影响米曲霉的发育和致病性。
    The cell wall is the first barrier against external adversity and plays roles in maintaining normal physiological functions of fungi. Previously, we reported a nucleosome assembly protein, MoNap1, in Magnaporthe oryzae that plays a role in cell wall integrity (CWI), stress response, and pathogenicity. Moreover, MoNap1 negatively regulates the expression of MoSMI1 encoded by MGG_03970. Here, we demonstrated that deletion of MoSMI1 resulted in a significant defect in appressorium function, CWI, cell morphology, and pathogenicity. Further investigation revealed that MoSmi1 interacted with MoOsm1 and MoMps1 and affected the phosphorylation levels of MoOsm1, MoMps1, and MoPmk1, suggesting that MoSmi1 regulates biological functions by mediating mitogen-activated protein kinase (MAPK) signalling pathway in M. oryzae. In addition, transcriptome data revealed that MoSmi1 regulates many infection-related processes in M. oryzae, such as membrane-related pathway and oxidation reduction process. In conclusion, our study demonstrated that MoSmi1 regulates CWI by mediating the MAPK pathway to affect development and pathogenicity of M. oryzae.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    干旱是影响农作物的主要因素,因此,需要努力提高植物对这种非生物胁迫的抵抗力。干旱和细胞壁完整性维持反应之间的重叠信号通路产生了通过修饰细胞壁来提高抗旱性的可能性。这里,使用草本植物和木本植物模型物种,拟南芥和杂交白杨,分别,我们研究了木聚糖在次生壁中的完整性如何影响植物对干旱胁迫的反应。植物,其中通过表达真菌GH10和GH11木聚糖酶或通过影响参与木聚糖骨架生物合成的基因来降低次生壁木聚糖完整性,受控制的干旱,同时通过RGB连续监测其生理反应,荧光,和/或高光谱相机。对于拟南芥,在完全取水后进行生存测试,并分析气孔功能和茎电导率。所有拟南芥木聚糖受损的品系在完全浇水后表现出更好的存活率,中度干旱增加气孔密度和延缓生长抑制,表明与改性的木聚糖完整性相关的对中度干旱的抵抗力增强。记录了木聚糖生物合成突变体(irx9,irx10和irx14)和木聚糖酶表达系之间的细微差异。irx14是最抗旱的基因型,尽管具有irx表型,但唯一具有木质素含量增加和木质部电导率不变的基因型。在GH11-表达GH10的植物中,玫瑰花结的生长受干旱的影响更大。在阿斯彭,GT43B和C基因的轻度下调不会影响干旱反应,并且在干旱和浇水条件下,转基因植物的生长比野生型更好。在水分充足的条件下,GH10和GH11木聚糖酶均强烈抑制茎的伸长和根的生长,但在表达GH11的植物中,干旱对生长的抑制作用小于野生型。总的来说,与野生型相比,次生壁木聚糖完整性受损的植物受到适度减少的水可利用性的影响较小,但它们的反应也因基因型和物种而异。因此,修改次生细胞壁完整性可以被认为是开发更适合抵御缺水的作物的潜在策略,但是需要更多的研究来解决这种变异性的潜在分子原因。
    Drought is a major factor affecting crops, thus efforts are needed to increase plant resilience to this abiotic stress. The overlapping signaling pathways between drought and cell wall integrity maintenance responses create a possibility of increasing drought resistance by modifying cell walls. Here, using herbaceous and woody plant model species, Arabidopsis and hybrid aspen, respectively, we investigated how the integrity of xylan in secondary walls affects the responses of plants to drought stress. Plants, in which secondary wall xylan integrity was reduced by expressing fungal GH10 and GH11 xylanases or by affecting genes involved in xylan backbone biosynthesis, were subjected to controlled drought while their physiological responses were continuously monitored by RGB, fluorescence, and/or hyperspectral cameras. For Arabidopsis, this was supplemented with survival test after complete water withdrawal and analyses of stomatal function and stem conductivity. All Arabidopsis xylan-impaired lines showed better survival upon complete watering withdrawal, increased stomatal density and delayed growth inhibition by moderate drought, indicating increased resilience to moderate drought associated with modified xylan integrity. Subtle differences were recorded between xylan biosynthesis mutants (irx9, irx10 and irx14) and xylanase-expressing lines. irx14 was the most drought resistant genotype, and the only genotype with increased lignin content and unaltered xylem conductivity despite its irx phenotype. Rosette growth was more affected by drought in GH11- than in GH10-expressing plants. In aspen, mild downregulation of GT43B and C genes did not affect drought responses and the transgenic plants grew better than the wild-type in drought and well-watered conditions. Both GH10 and GH11 xylanases strongly inhibited stem elongation and root growth in well-watered conditions but growth was less inhibited by drought in GH11-expressing plants than in wild-type. Overall, plants with xylan integrity impairment in secondary walls were less affected than wild-type by moderately reduced water availability but their responses also varied among genotypes and species. Thus, modifying the secondary cell wall integrity can be considered as a potential strategy for developing crops better suited to withstand water scarcity, but more research is needed to address the underlying molecular causes of this variability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    丝裂原活化蛋白激酶(MAPK)通路是真核生物生物过程调控的基础。新型担子菌隐球菌,以引起全球真菌性脑膜炎而闻名,拥有五个MAPK。其中,Cpk1,Hog1和Mpk1在有性生殖中已经确立了作用,应激反应,和细胞壁完整性。然而,对Cpk2和Mpk2的作用了解较少。我们的研究阐明了Cpk1/Cpk2和Mpk1/Mpk2MAPK途径之间的功能相互作用。我们发现CPK2过表达通过Mat2转录因子补偿cpk1Δ交配缺陷,揭示Cpk1和Cpk2之间的功能冗余。我们还发现,Mpk2响应细胞壁应激而磷酸化,由MAPK激酶(MAP2K)Mkk2和MAP2K激酶(MAP3K)Ssk2和Ste11调节的过程。MPK2的过表达通过影响关键细胞壁成分部分恢复了mpk1Δ中的细胞壁完整性,如几丁质和多糖胶囊。相反,MPK2过表达不能恢复MPK1Δ的耐热性和细胞膜完整性。这些结果表明,Mpk1和Mpk2在细胞对细胞壁和膜应力的反应中具有冗余和相反的作用。最值得注意的是,MPK1和MPK2的双重缺失通过上调交配调节转录因子MAT2和ZNF2,恢复了cpk1Δ突变体的野生型交配效率,表明Mpk1和Mpk2合作负调节信息素反应性Cpk1MAPK途径。我们的研究共同强调了复杂的隐球菌MAPK信号通路的调节网络,这些信号通路错综复杂地控制有性生殖和细胞壁完整性。从而控制真菌的发育和致病性。在真菌生物学领域的重要性,我们对新生隐球菌的研究提供了对称为丝裂原活化蛋白激酶(MAPKs)的特定蛋白质作用的关键见解.这里,我们发现了Cpk2和Mpk2的神秘功能,这两个MAPK以前分别被其主要对应物Cpk1和Mpk1所掩盖。我们的发现表明,这些“弱者”蛋白质不仅仅是备用者;它们在新生梭菌的交配和细胞壁维持等重要过程中起着至关重要的作用。当他们的优势对应物不存在时,他们介入和补偿的能力展示了新型梭菌的适应性。这种新发现的理解不仅丰富了我们对真菌MAPK机制的认识,而且强调了蛋白质在确保生物体生存和适应性方面的复杂平衡和相互作用。
    Mitogen-activated protein kinase (MAPK) pathways are fundamental to the regulation of biological processes in eukaryotic organisms. The basidiomycete Cryptococcus neoformans, known for causing fungal meningitis worldwide, possesses five MAPKs. Among these, Cpk1, Hog1, and Mpk1 have established roles in sexual reproduction, stress responses, and cell wall integrity. However, the roles of Cpk2 and Mpk2 are less understood. Our study elucidates the functional interplay between the Cpk1/Cpk2 and Mpk1/Mpk2 MAPK pathways in C. neoformans. We discovered that CPK2 overexpression compensates for cpk1Δ mating deficiencies via the Mat2 transcription factor, revealing functional redundancy between Cpk1 and Cpk2. We also found that Mpk2 is phosphorylated in response to cell wall stress, a process regulated by the MAPK kinase (MAP2K) Mkk2 and MAP2K kinases (MAP3Ks) Ssk2 and Ste11. Overexpression of MPK2 partially restores cell wall integrity in mpk1Δ by influencing key cell wall components, such as chitin and the polysaccharide capsule. Contrarily, MPK2 overexpression cannot restore thermotolerance and cell membrane integrity in mpk1Δ. These results suggest that Mpk1 and Mpk2 have redundant and opposing roles in the cellular response to cell wall and membrane stresses. Most notably, the dual deletion of MPK1 and MPK2 restores wild-type mating efficiency in cpk1Δ mutants via upregulation of the mating-regulating transcription factors MAT2 and ZNF2, suggesting that the Mpk1 and Mpk2 cooperate to negatively regulate the pheromone-responsive Cpk1 MAPK pathway. Our research collectively underscores a sophisticated regulatory network of cryptococcal MAPK signaling pathways that intricately govern sexual reproduction and cell wall integrity, thereby controlling fungal development and pathogenicity.IMPORTANCEIn the realm of fungal biology, our study on Cryptococcus neoformans offers pivotal insights into the roles of specific proteins called mitogen-activated protein kinases (MAPKs). Here, we discovered the cryptic functions of Cpk2 and Mpk2, two MAPKs previously overshadowed by their dominant counterparts Cpk1 and Mpk1, respectively. Our findings reveal that these \"underdog\" proteins are not just backup players; they play crucial roles in vital processes like mating and cell wall maintenance in C. neoformans. Their ability to step in and compensate when their dominant counterparts are absent showcases the adaptability of C. neoformans. This newfound understanding not only enriches our knowledge of fungal MAPK mechanisms but also underscores the intricate balance and interplay of proteins in ensuring the organism\'s survival and adaptability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胞吞作用在酵母中得到了广泛的研究,它在增长中起着至关重要的作用,信令调节,和细胞表面受体内化。然而,致病性丝状真菌内吞作用的生物学功能仍未被研究。在这项研究中,我们的目的是在功能上描述EdeA的作用,烟曲霉中酿酒酵母内吞蛋白Ede1的直系同源物。观察到EdeA以斑块形式分布在质膜上,并集中在菌丝的根尖下领中,内吞蛋白的定位特征。edeA丢失导致菌丝极性缺陷,减少分生孢子的产生,内吞起始位点少于亲本野生型。值得注意的是,edeAnull突变体对细胞壁破坏剂的敏感性增加,表明EdeA在维持烟曲霉细胞壁完整性中的作用。这一观察进一步得到了证据的支持,这些证据表明ΔedeA突变体的细胞壁厚度增加,伴随着MpkA的异常激活,细胞壁完整性途径的关键组成部分。此外,ΔedeA突变体在Galleriamelonella蜡蛾感染模型中显示出增加的致病性,可能是由于细胞壁形态的改变。定点诱变鉴定了EdeA的第三个EH(Eps15同源性)结构域内的保守残基E348对于其亚细胞定位和功能至关重要。总之,我们的结果强调了EdeA参与内吞作用,菌丝极性,细胞壁完整性,以及烟曲霉的致病性。
    目的:烟曲霉是一种重要的人类病原真菌,已知可引起侵袭性曲霉病,一种高死亡率的疾病。了解烟曲霉致病性的基本原理对于开发针对该病原体的有效策略至关重要。先前的研究强调了内吞作用在致病性酵母感染能力中的重要性;然而,其在致病霉菌中的生物学功能仍未被探索。我们对烟曲霉中EdeA的表征揭示了内吞作用在发育中的作用,应激反应,和致病霉菌的致病性。这些发现表明,内吞过程的组成部分可能是抗真菌治疗的潜在目标。
    Endocytosis has been extensively studied in yeasts, where it plays crucial roles in growth, signaling regulation, and cell-surface receptor internalization. However, the biological functions of endocytosis in pathogenic filamentous fungi remain largely unexplored. In this study, we aimed to functionally characterize the roles of EdeA, an ortholog of the Saccharomyces cerevisiae endocytic protein Ede1, in Aspergillus fumigatus. EdeA was observed to be distributed as patches on the plasma membrane and concentrated in the subapical collar of hyphae, a localization characteristic of endocytic proteins. Loss of edeA caused defective hyphal polarity, reduced conidial production, and fewer sites of endocytosis initiations than that of the parental wild type. Notably, the edeA null mutant exhibited increased sensitivity to cell wall-disrupting agents, indicating a role for EdeA in maintaining cell wall integrity in A. fumigatus. This observation was further supported by the evidence showing that the thickness of the cell wall in the ΔedeA mutant increased, accompanied by abnormal activation of MpkA, a key component in the cell wall integrity pathway. Additionally, the ΔedeA mutant displayed increased pathogenicity in the Galleria mellonella wax moth infection model, possibly due to alterations in cell wall morphology. Site-directed mutagenesis identified the conserved residue E348 within the third EH (Eps15 homology) domain of EdeA as crucial for its subcellular localization and functions. In conclusion, our results highlight the involvement of EdeA in endocytosis, hyphal polarity, cell wall integrity, and pathogenicity in A. fumigatus.
    OBJECTIVE: Aspergillus fumigatus is a significant human pathogenic fungus known to cause invasive aspergillosis, a disease with a high mortality rate. Understanding the basic principles of A. fumigatus pathogenicity is crucial for developing effective strategies against this pathogen. Previous research has underscored the importance of endocytosis in the infection capacity of pathogenic yeasts; however, its biological function in pathogenic mold remains largely unexplored. Our characterization of EdeA in A. fumigatus sheds light on the role of endocytosis in the development, stress response, and pathogenicity of pathogenic molds. These findings suggest that the components of the endocytosis process may serve as potential targets for antifungal therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物细胞壁提供了一个强大而灵活的屏障来保护细胞免受外部环境的影响。细胞壁的修饰,无论是在发育过程中还是在压力条件下,可以诱导细胞壁完整性反应,并最终导致基因表达的改变,激素产生,和细胞壁组成。细胞壁组成的这些变化可能需要对分泌途径进行重塑,以促进细胞壁成分和细胞壁合成酶从高尔基体的合成和分泌。这里,我们使用了活细胞共聚焦成像和透射电子显微镜的组合,以检查短期和组成的影响,这减少了纤维素的生物合成,和driselase,一种细胞壁降解真菌酶的混合物,细胞壁完整性反应过程中的细胞过程。我们表明,两种治疗方法都改变了细胞器形态,并触发了分泌途径的重新平衡,以促进分泌,同时减少了内吞运输。细胞壁修饰后,肌动蛋白细胞骨架的动态性较低,细胞器运动减少。这些结果表明,随着细胞壁的变化,内膜系统和肌动蛋白细胞骨架的主动重塑。
    The plant cell wall provides a strong yet flexible barrier to protect cells from the external environment. Modifications of the cell wall, either during development or under stress conditions, can induce cell wall integrity responses and ultimately lead to alterations in gene expression, hormone production, and cell wall composition. These changes in cell wall composition presumably require remodelling of the secretory pathway to facilitate synthesis and secretion of cell wall components and cell wall synthesis/remodelling enzymes from the Golgi apparatus. Here, we used a combination of live-cell confocal imaging and transmission electron microscopy to examine the short-term and constitutive impact of isoxaben, which reduces cellulose biosynthesis, and Driselase, a cocktail of cell-wall-degrading fungal enzymes, on cellular processes during cell wall integrity responses in Arabidopsis. We show that both treatments altered organelle morphology and triggered rebalancing of the secretory pathway to promote secretion while reducing endocytic trafficking. The actin cytoskeleton was less dynamic following cell wall modification, and organelle movement was reduced. These results demonstrate active remodelling of the endomembrane system and actin cytoskeleton following changes to the cell wall.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    APSES(Asm1p,Phd1p,Sok2p,Efg1p,和StuAp)家族转录因子在真菌的各种生物过程中起着至关重要的作用,然而,它们在植物病原真菌中的功能特征是有限的。在这项研究中,我们探讨了SsStuA的作用,一种典型的APSES转录因子,在细胞壁完整性(CWI)的调节中,菌核病菌核病的形成和致病性,是全球重要的植物病原真菌。SsStuA缺陷导致SsSmk3磷酸化水平异常,UDP-GlcNAc合成的关键基因SsAGM1无法响应细胞壁胁迫,对戊唑醇的耐受性下降。此外,ΔSsStuA不能形成菌核,但产生了更多的复合压疮。然而,由于侵入性菌丝生长不足和对过氧化氢的敏感性增加,ΔSsStuA的毒力显着降低。我们还发现SsStuA可以与过氧化氢酶家族基因的启动子结合,从而调节过氧化氢酶基因的表达。此外,在ΔSsStuA中发现活性氧(ROS)积累水平增加。总之,SsStua,作为参与CWI途径和ROS反应的核心转录因子,是营养生长所必需的,菌核形成,菌核菌的杀菌剂耐受性和全毒力。
    APSES (Asm1p, Phd1p, Sok2p, Efg1p, and StuAp) family transcription factors play crucial roles in various biological processes of fungi, however, their functional characterization in phytopathogenic fungi is limited. In this study, we explored the role of SsStuA, a typical APSES transcription factor, in the regulation of cell wall integrity (CWI), sclerotia formation and pathogenicity of Sclerotinia sclerotiorum, which is a globally important plant pathogenic fungus. A deficiency of SsStuA led to abnormal phosphorylation level of SsSmk3, the key gene SsAGM1 for UDP-GlcNAc synthesis was unable to respond to cell wall stress, and decreased tolerance to tebuconazole. In addition, ΔSsStuA was unable to form sclerotia but produced more compound appressoria. Nevertheless, the virulence of ΔSsStuA was significantly reduced due to the deficiency of the invasive hyphal growth and increased susceptibility to hydrogen peroxide. We also revealed that SsStuA could bind to the promoter of catalase family genes which regulate the expression of catalase genes. Furthermore, the level of reactive oxygen species (ROS) accumulation was found to be increased in ΔSsStuA. In summary, SsStuA, as a core transcription factor involved in the CWI pathway and ROS response, is required for vegetative growth, sclerotia formation, fungicide tolerance and the full virulence of S. sclerotiorum.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞壁包围着所有的植物细胞,它们的组成和结构受到严格调节,以维持细胞和生物体的稳态。为了应对墙壁损坏,细胞壁完整性(CWI)系统参与改善对植物生长的影响。尽管CWI在植物发育中起着核心作用,我们目前对这个系统如何在分子水平上发挥作用的理解是有限的。这里,我们研究了拟南芥突变体的黄化幼苗的转录组,在三种主要的壁多糖中存在缺陷,果胶(quasimodo2),纤维素(纤维素合成酶3je5),和木葡聚糖(木葡聚糖木糖基转移酶1和2),以探测当特定壁成分减少或缺失时,细胞壁相关基因表达的变化是否发生以及相似或不同。果胶和纤维素缺乏的植物的转录组发生了许多变化,但是在缺乏木葡聚糖的植物的转录组中发生的变化较少。我们假设这可能是因为果胶与其他壁组件和/或完整性传感器相互作用,而纤维素构成壁的主要承重成分;在没有主要多糖的情况下,两者的缺陷似乎都会触发结构蛋白的表达,以保持壁的内聚力。在植物中的CWI中发挥功能的这一组核心基因代表了未来对健壮和弹性细胞壁的基因工程的有吸引力的目标。
    Cell walls surround all plant cells, and their composition and structure are tightly regulated to maintain cellular and organismal homeostasis. In response to wall damage, the cell wall integrity (CWI) system is engaged to ameliorate effects on plant growth. Despite the central role CWI plays in plant development, our current understanding of how this system functions at the molecular level is limited. Here, we investigated the transcriptomes of etiolated seedlings of mutants of Arabidopsis thaliana with defects in three major wall polysaccharides, pectin (quasimodo2), cellulose (cellulose synthase3 je5), and xyloglucan (xyloglucan xylosyltransferase1 and 2), to probe whether changes in the expression of cell wall-related genes occur and are similar or different when specific wall components are reduced or missing. Many changes occurred in the transcriptomes of pectin- and cellulose-deficient plants, but fewer changes occurred in the transcriptomes of xyloglucan-deficient plants. We hypothesize that this might be because pectins interact with other wall components and/or integrity sensors, whereas cellulose forms a major load-bearing component of the wall; defects in either appear to trigger the expression of structural proteins to maintain wall cohesion in the absence of a major polysaccharide. This core set of genes functioning in CWI in plants represents an attractive target for future genetic engineering of robust and resilient cell walls.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自噬是消除细胞内货物以维持细胞内稳态和提高应激抗性的关键的中心生物降解途径。同时,促丝裂原活化蛋白激酶级联调节细胞壁完整性信号的关键成分MoMkk1在稻瘟病菌的自噬中具有重要作用。尽管如此,MoMkk1调控自噬的机制尚不清楚.有趣的是,我们发现MoMkk1通过磷酸化调控自噬蛋白MoAtg9。MoAtg9是通过自噬相关蛋白激酶MoAtg1进行磷酸化的跨膜蛋白。这里,我们提供的证据表明,在自噬形成的分离膜阶段,磷脂易位需要MoMkk1依赖性的MoAtg9磷酸化,对真菌的发育和致病性至关重要的自噬过程。相比之下,MoAtg1依赖性磷酸化的MoAtg9负调控这一过程,也影响生长和致病性。我们的研究首次证明MoAtg9通过蛋白质磷酸化受到MoMkk1的调节,并且MoMkk1和MoAtg1二分法地调节自噬以成为米曲霉的生长和致病性的基础。重要稻瘟病菌利用多种信号通路促进寄主植物的定殖。MoMkk1,一种细胞壁完整性信号激酶,在高度保守的自噬激酶MoAtg1介导的自噬通路中发挥重要作用。MoMkk1如何与MoAtg1协调调节自噬仍然难以捉摸。这里,我们提供的证据表明,MoMkk1磷酸化MoAtg9在自噬体形成的分离膜或较小的膜结构阶段正向调节磷脂易位。这与相同过程中MoAtg1对MoAtg9的负调节相反。有趣的是,MoMkk1介导的MoAtg9磷酸化增强水稻的真菌感染,而依赖于MoAtg1的MoAtg9磷酸化则显著减弱。一起来看,我们通过证明MoMkk1和MoAtg1在真菌自噬和致病性调节中的二分法功能,揭示了自噬和毒力调节的新机制。
    Autophagy is a central biodegradation pathway critical in eliminating intracellular cargo to maintain cellular homeostasis and improve stress resistance. At the same time, the key component of the mitogen-activated protein kinase cascade regulating cell wall integrity signaling MoMkk1 has an essential role in the autophagy of the rice blast fungus Magnaporthe oryzae. Still, the mechanism of how MoMkk1 regulates autophagy is unclear. Interestingly, we found that MoMkk1 regulates the autophagy protein MoAtg9 through phosphorylation. MoAtg9 is a transmembrane protein subjected to phosphorylation by autophagy-related protein kinase MoAtg1. Here, we provide evidence demonstrating that MoMkk1-dependent MoAtg9 phosphorylation is required for phospholipid translocation during isolation membrane stages of autophagosome formation, an autophagic process essential for the development and pathogenicity of the fungus. In contrast, MoAtg1-dependent phosphorylation of MoAtg9 negatively regulates this process, also impacting growth and pathogenicity. Our studies are the first to demonstrate that MoAtg9 is subject to MoMkk1 regulation through protein phosphorylation and that MoMkk1 and MoAtg1 dichotomously regulate autophagy to underlie the growth and pathogenicity of M. oryzae.IMPORTANCEMagnaporthe oryzae utilizes multiple signaling pathways to promote colonization of host plants. MoMkk1, a cell wall integrity signaling kinase, plays an essential role in autophagy governed by a highly conserved autophagy kinase MoAtg1-mediated pathway. How MoMkk1 regulates autophagy in coordination with MoAtg1 remains elusive. Here, we provide evidence that MoMkk1 phosphorylates MoAtg9 to positively regulate phospholipid translocation during the isolation membrane or smaller membrane structures stage of autophagosome formation. This is in contrast to the negative regulation of MoAtg9 by MoAtg1 for the same process. Intriguingly, MoMkk1-mediated MoAtg9 phosphorylation enhances the fungal infection of rice, whereas MoAtg1-dependant MoAtg9 phosphorylation significantly attenuates it. Taken together, we revealed a novel mechanism of autophagy and virulence regulation by demonstrating the dichotomous functions of MoMkk1 and MoAtg1 in the regulation of fungal autophagy and pathogenicity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    组蛋白乙酰转移酶(HAT)介导的表观遗传修饰对于真核生物的多种细胞过程至关重要。然而,人类病原体烟曲霉中HAT的功能仍然知之甚少。在这项研究中,我们表征了MOZ的功能,Ybf2/Sas3,Sas2和Tip60(MYST)家族组蛋白乙酰转移酶与烟曲霉沉默(Sas3)有关。表型分析显示,Sas3的丢失导致菌落生长显著受损,分生孢子,以及梅洛内拉模型中的毒力。亚细胞定位和Western印迹分析表明,Sas3定位于细胞核,能够在体内乙酰化组蛋白H3的赖氨酸9和14。重要的是,我们发现,Sas3对于烟曲霉的细胞壁完整性(CWI)途径至关重要,这可以通过对细胞壁干扰剂的超敏反应来证明,改变细胞壁厚度,和CWI蛋白激酶MpkA的异常磷酸化水平。此外,定点诱变研究表明,保守的甘氨酸残基G641和G643以及谷氨酸残基E664对Sas3的乙酰化活性至关重要。出乎意料的是,只有Sas3的三重突变(G641A/G643A/E664A)显示出与Δsas3突变体相似的缺陷表型,而双突变或单突变则没有。该结果暗示Sas3的作用可能超出组蛋白乙酰化。总的来说,我们的发现表明,MYST家族HATSas3在真菌发育中起重要作用,毒力,以及烟曲霉的细胞壁完整性。
    目的:由HAT控制的表观遗传修饰对于真核生物的各种细胞过程是必不可少的。尽管如此,人类病原体烟曲霉中HAT的确切功能仍然难以捉摸。在这项研究中,我们揭示了MYST家族HATSas3在菌落生长中的作用,分生孢子,毒力,和烟曲霉细胞壁应激反应。特别是,我们的研究结果表明,Sas3可以通过与组蛋白乙酰化无关的机制发挥作用,如定点诱变实验所证明的。总的来说,这项研究拓宽了我们对真菌病原体中HATs调控机制的理解。
    Histone acetyltransferase (HAT)-mediated epigenetic modification is essential for diverse cellular processes in eukaryotes. However, the functions of HATs in the human pathogen Aspergillus fumigatus remain poorly understood. In this study, we characterized the functions of MOZ, Ybf2/Sas3, Sas2, and Tip60 (MYST)-family histone acetyltransferase something about silencing (Sas3) in A. fumigatus. Phenotypic analysis revealed that loss of Sas3 results in significant impairments in colony growth, conidiation, and virulence in the Galleria mellonella model. Subcellular localization and Western blot analysis demonstrated that Sas3 localizes to nuclei and is capable of acetylating lysine 9 and 14 of histone H3 in vivo. Importantly, we found that Sas3 is critical for the cell wall integrity (CWI) pathway in A. fumigatus as evidenced by hypersensitivity to cell wall-perturbing agents, altered cell wall thickness, and abnormal phosphorylation levels of CWI protein kinase MpkA. Furthermore, site-directed mutagenesis studies revealed that the conserved glycine residues G641 and G643 and glutamate residue E664 are crucial for the acetylation activity of Sas3. Unexpectedly, only triple mutations of Sas3 (G641A/G643A/E664A) displayed defective phenotypes similar to the Δsas3 mutant, while double or single mutations did not. This result implies that the role of Sas3 may extend beyond histone acetylation. Collectively, our findings demonstrate that MYST-family HAT Sas3 plays an important role in the fungal development, virulence, and cell wall integrity in A. fumigatus.
    OBJECTIVE: Epigenetic modification governed by HATs is indispensable for various cellular processes in eukaryotes. Nonetheless, the precise functions of HATs in the human pathogen Aspergillus fumigatus remain elusive. In this study, we unveil the roles of MYST-family HAT Sas3 in colony growth, conidiation, virulence, and cell wall stress response in A. fumigatus. Particularly, our findings demonstrate that Sas3 can function through mechanisms unrelated to histone acetylation, as evidenced by site-directed mutagenesis experiments. Overall, this study broadens our understanding of the regulatory mechanism of HATs in fungal pathogens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    灰树花多糖,尤其是β-D-葡聚糖,具有显著的抗肿瘤作用,抗氧化和免疫刺激活性。然而,合成机理还有待阐明。发现新发现的糖基转移酶UGT88A1在体外延伸葡聚糖链。然而,UGT88A1在福树体内生长和多糖合成中的作用尚不清楚。在这项研究中,UGT88A1的过表达改善了菌丝生长,增加多糖产量,和降低细胞壁压力敏感性。沉默菌株的生物量和多糖产量下降,细胞壁的压力敏感性增加。UGT88A1的过表达和沉默都影响了不同菌株多糖的单糖组成和表面形态,并影响了不同菌株多糖的抗氧化活性。葡聚糖合成酶(GLS)的信使RNA表达,UTP-葡萄糖-1-磷酸尿苷酰转移酶(UGP),与多糖合成相关的UDP-木糖-4-差向异构酶(UXE),在过表达菌株中,与细胞壁完整性相关的基因增加。总的来说,我们的研究表明,UGT88A1在生长中起着重要的作用,压力,和甘草多糖的合成,为探索多糖合成和代谢调控途径提供参考。要点:•UGT88A1在增长中起着重要作用,应激反应,和甘草多糖的合成。•UGT88A1影响单糖组成,福树多糖的表面形态和抗氧化活性。•UGT88A1调节与多糖合成和细胞壁完整性相关的基因的mRNA表达。
    Grifola frodosa polysaccharides, especially β-D-glucans, possess significant anti-tumor, antioxidant and immunostimulatory activities. However, the synthesis mechanism remains to be elucidated. A newly discovered glycosyltransferase UGT88A1 was found to extend glucan chains in vitro. However, the role of UGT88A1 in the growth and polysaccharide synthesis of G. frondosa in vivo remains unclear. In this study, the overexpression of UGT88A1 improved mycelial growth, increased polysaccharide production, and decreased cell wall pressure sensitivity. Biomass and polysaccharide production decreased in the silenced strain, and the pressure sensitivity of the cell wall increased. Overexpression and silencing of UGT88A1 both affected the monosaccharide composition and surface morphology of G. frondosa polysaccharides and influenced the antioxidant activity of polysaccharides from different strains. The messenger RNA expression of glucan synthase (GLS), UTP-glucose-1-phosphate uridylyltransferase (UGP), and UDP-xylose-4-epimerase (UXE) related to polysaccharide synthesis, and genes related to cell wall integrity increased in the overexpression strain. Overall, our study indicates that UGT88A1 plays an important role in the growth, stress, and polysaccharide synthesis of G. frondosa, providing a reference for exploring the pathway of polysaccharide synthesis and metabolic regulation. KEY POINTS: •UGT88A1 plays an important role in the growth, stress response, and polysaccharide synthesis in G. frondosa. •UGT88A1 affected the monosaccharide composition, surface morphology and antioxidant activity of G. frondosa polysaccharides. •UGT88A1 regulated the mRNA expression of genes related to polysaccharide synthesis and cell wall integrity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号