alphafold

AlphaFold
  • 文章类型: Journal Article
    小分子药物设计取决于获得共结晶的配体-蛋白质结构。尽管AlphaFold2在蛋白质天然结构预测方面取得了进展,它对载脂蛋白结构的关注忽略了配体和相关的完整结构。此外,设计选择性药物通常受益于不同亚稳态构象的靶向。因此,AlphaFold2模型在虚拟筛选和药物发现中的直接应用仍是暂时的。这里,我们展示了一个基于AlphaFold2的框架,结合了全原子增强的采样分子动力学和诱导拟合对接,名为AF2RAVE-Glide,进行基于计算模型的亚稳态蛋白激酶构象的小分子结合,从蛋白质序列开始。我们展示了AF2RAVE-Glide对三种不同的哺乳动物蛋白激酶及其I型和II型抑制剂的工作流程,特别强调结合已知的II型激酶抑制剂,其靶向亚稳态的经典DFG-out状态。这些状态不容易从AlphaFold2采样。这里,我们演示了如何使用AF2RAVE对这些亚稳态构象进行取样,以获得足够高的准确度,从而使已知的II型激酶抑制剂的后续对接在对接计算中的成功率超过50%.我们认为该方案应该可用于其他激酶和更多蛋白质。
    Small-molecule drug design hinges on obtaining co-crystallized ligand-protein structures. Despite AlphaFold2\'s strides in protein native structure prediction, its focus on apo structures overlooks ligands and associated holo structures. Moreover, designing selective drugs often benefits from the targeting of diverse metastable conformations. Therefore, direct application of AlphaFold2 models in virtual screening and drug discovery remains tentative. Here, we demonstrate an AlphaFold2-based framework combined with all-atom enhanced sampling molecular dynamics and Induced Fit docking, named AF2RAVE-Glide, to conduct computational model-based small-molecule binding of metastable protein kinase conformations, initiated from protein sequences. We demonstrate the AF2RAVE-Glide workflow on three different mammalian protein kinases and their type I and II inhibitors, with special emphasis on binding of known type II kinase inhibitors which target the metastable classical DFG-out state. These states are not easy to sample from AlphaFold2. Here, we demonstrate how with AF2RAVE these metastable conformations can be sampled for different kinases with high enough accuracy to enable subsequent docking of known type II kinase inhibitors with more than 50% success rates across docking calculations. We believe the protocol should be deployable for other kinases and more proteins generally.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    N-甲基-D-天冬氨酸(NMDA)受体是由两个强制性GluN1亚基和两个替代性GluN2或GluN3亚基组成的异四等离子通道,形成GluN1-N2、GluN1-N3和GluN1-N2-N3型NMDA受体。广泛的研究集中在常规GluN1-GluN2NMDA受体的功能和结构特性上,因为它们的早期发现和高表达水平。然而,关于非常规GluN1-N3NMDA受体的知识仍然有限.在这项研究中,我们模拟了GluN1-N3A,GluN1-N3B,和GluN1-N3A-N3BNMDA受体使用深度学习的蛋白质语言预测算法AlphaFold和RoseTTAFoldAll-Atom。然后,我们将这些结构与GluN1-N2和GluN1-N3A受体cryo-EM结构进行了比较,发现GluN1-N3受体在亚基排列方面具有不同的特性,域交换,和域交互。此外,我们预测了激动剂或拮抗剂结合的结构,突出关键的分子-残基相互作用。我们的发现为NMDA受体的结构和功能多样性提供了新的思路,为药物开发提供了新的方向。本研究使用先进的人工智能算法对GluN1-N3NMDA受体进行建模,揭示了与常规GluN1-N2受体相比独特的结构特性和相互作用。通过突出关键的分子-残基相互作用并预测配体结合的结构,我们的研究增强了对NMDA受体多样性的理解,并为靶向药物开发提供了新的见解.
    N-methyl-D-aspartate (NMDA) receptors are heterotetrametric ion channels composed of two obligatory GluN1 subunits and two alternative GluN2 or GluN3 subunits, forming GluN1-N2, GluN1-N3, and GluN1-N2-N3 type of NMDA receptors. Extensive research has focused on the functional and structural properties of conventional GluN1-GluN2 NMDA receptors due to their early discovery and high expression levels. However, the knowledge of unconventional GluN1-N3 NMDA receptors remains limited. In this study, we modeled the GluN1-N3A, GluN1-N3B, and GluN1-N3A-N3B NMDA receptors using deep-learned protein-language predication algorithms AlphaFold and RoseTTAFold All-Atom. We then compared these structures with GluN1-N2 and GluN1-N3A receptor cryo-EM structures and found that GluN1-N3 receptors have distinct properties in subunit arrangement, domain swap, and domain interaction. Furthermore, we predicted the agonist- or antagonist-bound structures, highlighting the key molecular-residue interactions. Our findings shed new light on the structural and functional diversity of NMDA receptors and provide a new direction for drug development. This study uses advanced AI algorithms to model GluN1-N3 NMDA receptors, revealing unique structural properties and interactions compared to conventional GluN1-N2 receptors. By highlighting key molecular-residue interactions and predicting ligand-bound structures, our research enhances the understanding of NMDA receptor diversity and offers new insights for targeted drug development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    从其序列准确预测抗体-抗原复合物结构的能力可以极大地促进我们对免疫系统的理解,并有助于开发新的抗体疗法。在机器学习(ML)的进步推动下,在预测蛋白质-蛋白质相互作用(PPI)方面取得了相当大的进展。要了解字段的当前状态,我们比较了从序列中预测抗体-抗原复合物的六种代表性方法,包括两种训练来预测PPI的深度学习方法(AlphaFold-Multimer和RoseTTAFold),两种复合方法,最初分别预测抗体和抗原结构并将其对接(使用抗体模式ClusPro),在Rosetta(SnugDock)中对ClusPro的全球对接姿势进行局部改进,以及通过基于ML的表位和互补位预测(AbAdapt)将同源性建模与刚体对接相结合的管道。我们发现AlphaFold-Multimer优于其他方法,尽管绝对性能留下了相当大的改进空间。较低质量的AlphaFold-Multimer模型在三级基序(TERM)的水平上显示出明显的结构偏差,在蛋白质数据库(PDB)的不含抗体的结构中具有较少的结构匹配。具体来说,较好的模型在抗体-抗原界面表现出较常见的PDB样TERM。重要的是,性能与界面TERM的共性之间的明确关系表明,结构数据库中界面几何数据的稀缺性目前可能限制了ML在预测抗体-抗原相互作用方面的应用.
    The ability to accurately predict antibody-antigen complex structures from their sequences could greatly advance our understanding of the immune system and would aid in the development of novel antibody therapeutics. There have been considerable recent advancements in predicting protein-protein interactions (PPIs) fueled by progress in machine learning (ML). To understand the current state of the field, we compare six representative methods for predicting antibody-antigen complexes from sequence, including two deep learning approaches trained to predict PPIs in general (AlphaFold-Multimer and RoseTTAFold), two composite methods that initially predict antibody and antigen structures separately and dock them (using antibody-mode ClusPro), local refinement in Rosetta (SnugDock) of globally docked poses from ClusPro, and a pipeline combining homology modeling with rigid-body docking informed by ML-based epitope and paratope prediction (AbAdapt). We find that AlphaFold-Multimer outperformed other methods, although the absolute performance leaves considerable room for improvement. AlphaFold-Multimer models of lower quality display significant structural biases at the level of tertiary motifs (TERMs) toward having fewer structural matches in non-antibody-containing structures from the Protein Data Bank (PDB). Specifically, better models exhibit more common PDB-like TERMs at the antibody-antigen interface than worse ones. Importantly, the clear relationship between performance and the commonness of interfacial TERMs suggests that the scarcity of interfacial geometry data in the structural database may currently limit the application of ML to the prediction of antibody-antigen interactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    低分辨率的晶体学必须从较少的实验观察中确定原子模型,这在没有模型的情况下是具有挑战性的。此外,当独立实验数据稀缺时,模型偏差更为严重。我们的方法通过将使用Phaser的精确模型片段的位置与密度修改和使用SHELXE对结果图的解释相结合来解决相位问题。从局部来看,正确的结构,密度修饰过程和立体化学约束绘制结构的其余部分,验证结果。现在在低分辨率下利用了相同的原理。线圈很重要,普遍存在的结构,但众所周知很难相位和预测。只要螺旋正确取向,正确的解决方案和不正确的解决方案都无法通过晶体学品质因数进行区分。我们结合了卷曲螺旋验证,旨在建立竞争,不相容的结构假设来探测这两个结果,并建立数据的力量来区分它们。在ARCIMBOLDO_LITE中证明了从3到4的测试用例中盘绕线圈定相和验证的效率,放置单螺旋,在ARCIMBOLDO_SHREDDER中,片段来自AlphaFold模型。低分辨率的SHELXE跟踪已得到增强,保持其当地特色,但扩展环境评估。对于非螺旋结构,验证在片段定位过程中进行了演示。它的使用以VSR1结构的解决方案为例来说明,取决于LLG优化和电子密度新功能的出现。依靠验证,我们已经将ARCIMBOLDO软件的使用扩展到低分辨率。
    Crystallography at low resolution must determine the atomic model from less experimental observations, which is challenging in the absence of a model. In addition, model bias is more severe when independent experimental data are scarce. Our methods solve the phase problem by combining the location of accurate model fragments using Phaser with density modification and interpretation of the resulting maps using SHELXE. From a partial, correct structure, the density modification process and the stereochemical constraints draw the rest of the structure, validating the result. This same principle is now exploited at low resolution. Coiled coils are important, ubiquitous structures but notoriously difficult to phase and to predict. Both correct solutions and incorrect ones are poorly discriminated by the crystallographic figures of merit as long as helices are correctly oriented. We incorporate coiled-coil verification, designed to set up competing, incompatible structural hypotheses to probe both the results and establish the power of the data to discriminate them. Efficiency of coiled-coil phasing and validation in test cases from 3 to 4 Å is demonstrated in ARCIMBOLDO_LITE, placing single helices, and in ARCIMBOLDO_SHREDDER, with fragments derived from AlphaFold models. SHELXE tracing at low resolution has been enhanced, maintaining its local character but extending the environment assessment. For non-helical structures, verification is demonstrated in the fragment location process. Its use is exemplified with the solution of the VSR1 structure at 3.5 Å, depending on LLG optimization and the emergence of new features in the electron density. Relying on verification, we have extended the use of the ARCIMBOLDO software to low resolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    从AlphaFold最初发布两年后,我们已经看到它作为一种结构预测工具被广泛采用。这里,我们讨论了一些基于AlphaFold的最新作品,特别关注其在结构生物学社区中的使用。这包括加速结构确定本身的用例,实现新的计算研究,并构建新的工具和工作流程。我们还研究了AlphaFold正在进行的验证,因为它的预测继续与大量实验结构进行比较,以进一步描绘模型的能力和局限性。
    Two years on from the initial release of AlphaFold, we have seen its widespread adoption as a structure prediction tool. Here, we discuss some of the latest work based on AlphaFold, with a particular focus on its use within the structural biology community. This encompasses use cases like speeding up structure determination itself, enabling new computational studies, and building new tools and workflows. We also look at the ongoing validation of AlphaFold, as its predictions continue to be compared against large numbers of experimental structures to further delineate the model\'s capabilities and limitations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质结构预测对于理解其功能和行为很重要。本综述研究对用于预测蛋白质结构的计算模型进行了全面综述。它涵盖了从已建立的蛋白质建模到最先进的人工智能(AI)框架的发展。本文将首先简要介绍蛋白质的结构,蛋白质建模,和AI。关于已建立的蛋白质建模的部分将讨论同源性建模,从头开始建模,和线程。下一部分是基于深度学习的模型。它介绍了一些最先进的人工智能模型,例如AlphaFold(AlphaFold,AlphaFold2,AlphaFold3),RoseTTAFold,ProteinBERT,等。本节还讨论了人工智能技术如何集成到瑞士模型等既定框架中,罗塞塔,还有我-TASSER.使用CASP14(结构预测的关键评估)和CASP15的排名比较模型性能。CASP16正在进行中,其结果不包括在本次审查中。连续自动模型评估(CAMEO)补充了两年一次的CASP实验。模板建模得分(TM-score),全球距离测试总分(GDT_TS),还讨论了局部距离差异测试(LDDT)得分。然后,本文承认预测蛋白质结构的持续困难,并强调了动态蛋白质行为等额外搜索的必要性。构象变化,和蛋白质-蛋白质相互作用。在应用程序部分,本文介绍了药物设计等各个领域的应用,工业,教育,和新型蛋白质的开发。总之,本文全面概述了已建立的蛋白质建模和基于深度学习的蛋白质结构预测模型的最新进展。它强调了人工智能取得的重大进展,并确定了进一步调查的潜在领域。
    Protein structure prediction is important for understanding their function and behavior. This review study presents a comprehensive review of the computational models used in predicting protein structure. It covers the progression from established protein modeling to state-of-the-art artificial intelligence (AI) frameworks. The paper will start with a brief introduction to protein structures, protein modeling, and AI. The section on established protein modeling will discuss homology modeling, ab initio modeling, and threading. The next section is deep learning-based models. It introduces some state-of-the-art AI models, such as AlphaFold (AlphaFold, AlphaFold2, AlphaFold3), RoseTTAFold, ProteinBERT, etc. This section also discusses how AI techniques have been integrated into established frameworks like Swiss-Model, Rosetta, and I-TASSER. The model performance is compared using the rankings of CASP14 (Critical Assessment of Structure Prediction) and CASP15. CASP16 is ongoing, and its results are not included in this review. Continuous Automated Model EvaluatiOn (CAMEO) complements the biennial CASP experiment. Template modeling score (TM-score), global distance test total score (GDT_TS), and Local Distance Difference Test (lDDT) score are discussed too. This paper then acknowledges the ongoing difficulties in predicting protein structure and emphasizes the necessity of additional searches like dynamic protein behavior, conformational changes, and protein-protein interactions. In the application section, this paper introduces some applications in various fields like drug design, industry, education, and novel protein development. In summary, this paper provides a comprehensive overview of the latest advancements in established protein modeling and deep learning-based models for protein structure predictions. It emphasizes the significant advancements achieved by AI and identifies potential areas for further investigation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    内体膜运输由特定的蛋白质外壳和富含肌动蛋白的膜结构域的形成介导。Retromer复合物与分选nexin(SNX)货物衔接子(包括SNX27)协调,并且SNX27-Retromer组装与Wiskott-Aldrich综合征蛋白和SCAR同源物(WASH)复合物相互作用,该复合物使肌动蛋白丝成核,从而建立内体再循环域。晶体结构,建模,生物化学,细胞验证揭示了WASH的FAM21亚基如何与Retromer和SNX27相互作用。FAM21使用与ESCPE-1复合物的SNX1和SNX2亚基中发现的相似的酸性-Asp-Leu-Phe(aDLF)基序结合SNX27的FERM结构域。重叠的FAM21重复和含有特定Pro-Leu的基序结合Retromer上的三个不同位点,涉及VPS35和VPS29亚基。主要VPS35结合位点的突变不会阻止货物回收;然而,它部分地减少了内体WASH关联,表明冗余相互作用的网络促进了WASH复合物的内体活性。这些研究建立了SNX27-Retromer如何通过内体膜再循环结构域动态组装所需的重叠和多重基序相互作用与WASH复合物偶联的分子基础。
    Endosomal membrane trafficking is mediated by specific protein coats and formation of actin-rich membrane domains. The Retromer complex coordinates with sorting nexin (SNX) cargo adaptors including SNX27, and the SNX27-Retromer assembly interacts with the Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex which nucleates actin filaments establishing the endosomal recycling domain. Crystal structures, modeling, biochemical, and cellular validation reveal how the FAM21 subunit of WASH interacts with both Retromer and SNX27. FAM21 binds the FERM domain of SNX27 using acidic-Asp-Leu-Phe (aDLF) motifs similar to those found in the SNX1 and SNX2 subunits of the ESCPE-1 complex. Overlapping FAM21 repeats and a specific Pro-Leu containing motif bind three distinct sites on Retromer involving both the VPS35 and VPS29 subunits. Mutation of the major VPS35-binding site does not prevent cargo recycling; however, it partially reduces endosomal WASH association indicating that a network of redundant interactions promote endosomal activity of the WASH complex. These studies establish the molecular basis for how SNX27-Retromer is coupled to the WASH complex via overlapping and multiplexed motif-based interactions required for the dynamic assembly of endosomal membrane recycling domains.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞免疫依赖于T细胞受体(TCR)识别由细胞表面上的I类主要组织相容性复合物(MHC)受体呈递的肽(P)的能力。TCR-肽-MHC(TCRpMHC)相互作用是激活T细胞的关键步骤,这些分子的结构特征在决定这种相互作用的特异性和亲和力方面起着重要作用。因此,获得TCRpMHC复合物的3D结构为细胞免疫的各个方面提供了有价值的见解,并且可以促进基于T细胞的免疫疗法的发展。这里,我们的目的是比较三种流行的网络服务器,用于对TCRpMHC复合体的结构进行建模,即ImmuneScape(IS),TCRpMHCmodels,和TCRmodel2,以检查它们的优势和局限性。每种方法都采用不同的建模策略,包括对接,同源建模,和深度学习。通过复制87个TCRpMHC复合物的数据集的3D结构来评估每种方法的准确性,该复合物具有可在蛋白质数据库(PDB)上获得的实验确定的晶体结构。所有选择的结构仅限于人类MHC等位基因,提供一组不同的肽配体。使用多个指标对生成的模型进行了详细分析,包括均方根偏差(RMSD)和CAPRI和DockQ的标准化评估。特别注意TCR的互补决定区(CDR)环和肽配体,它定义了给定TCRpMHC相互作用的大多数独特特征和特异性。我们的研究为TCRpMHC建模提供了当前最先进的乐观观点,但强调了一些必须解决的挑战,以支持这些工具在TCR工程和基于TCR的计算机辅助设计中的未来应用。
    Cellular immunity relies on the ability of a T-cell receptor (TCR) to recognize a peptide (p) presented by a class I major histocompatibility complex (MHC) receptor on the surface of a cell. The TCR-peptide-MHC (TCRpMHC) interaction is a crucial step in activating T-cells, and the structural characteristics of these molecules play a significant role in determining the specificity and affinity of this interaction. Hence, obtaining 3D structures of TCRpMHC complexes offers valuable insights into various aspects of cellular immunity and can facilitate the development of T-cell-based immunotherapies. Here, we aimed to compare three popular web servers for modeling the structures of TCRpMHC complexes, namely ImmuneScape (IS), TCRpMHCmodels, and TCRmodel2, to examine their strengths and limitations. Each method employs a different modeling strategy, including docking, homology modeling, and deep learning. The accuracy of each method was evaluated by reproducing the 3D structures of a dataset of 87 TCRpMHC complexes with experimentally determined crystal structures available on the Protein Data Bank (PDB). All selected structures were limited to human MHC alleles, presenting a diverse set of peptide ligands. A detailed analysis of produced models was conducted using multiple metrics, including Root Mean Square Deviation (RMSD) and standardized assessments from CAPRI and DockQ. Special attention was given to the complementarity-determining region (CDR) loops of the TCRs and to the peptide ligands, which define most of the unique features and specificity of a given TCRpMHC interaction. Our study provides an optimistic view of the current state-of-the-art for TCRpMHC modeling but highlights some remaining challenges that must be addressed in order to support the future application of these tools for TCR engineering and computer-aided design of TCR-based immunotherapies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    非洲猪瘟病毒(ASFV)是猪中通常致命的疾病,对猪的牲畜和猪的生产者构成威胁。其复杂的基因组包含150多个编码区,由于缺乏有关病毒蛋白质功能和病毒蛋白质之间以及病毒与宿主蛋白质之间的蛋白质-蛋白质相互作用的基本知识,因此开发针对该病毒的有效疫苗仍然是一项挑战。在这项工作中,我们使用人工智能驱动的蛋白质结构预测工具鉴定了ASFV-ASFV蛋白质-蛋白质相互作用(PPIs).我们将PPI鉴定工作流程以痘苗病毒为基准,一种被广泛研究的核质大DNA病毒,并发现它可以识别金标准的PPI,这些PPI已经在全基因组计算筛选中在体外得到了验证。我们将此工作流程应用于超过18,000个ASFV蛋白的成对组合,并能够鉴定出17个新型PPI,其中许多已经证实了它们的蛋白质-蛋白质相互作用的实验或生物信息学证据,进一步验证其相关性。两种蛋白质-蛋白质相互作用,I267L和I8L,I267L__I8L,和B175L和DP79L,B175L__DP79L,是涉及已知调节宿主免疫应答的病毒蛋白的新型PPI。
    The African swine fever virus (ASFV) is an often deadly disease in swine and poses a threat to swine livestock and swine producers. With its complex genome containing more than 150 coding regions, developing effective vaccines for this virus remains a challenge due to a lack of basic knowledge about viral protein function and protein-protein interactions between viral proteins and between viral and host proteins. In this work, we identified ASFV-ASFV protein-protein interactions (PPIs) using artificial intelligence-powered protein structure prediction tools. We benchmarked our PPI identification workflow on the Vaccinia virus, a widely studied nucleocytoplasmic large DNA virus, and found that it could identify gold-standard PPIs that have been validated in vitro in a genome-wide computational screening. We applied this workflow to more than 18,000 pairwise combinations of ASFV proteins and were able to identify seventeen novel PPIs, many of which have corroborating experimental or bioinformatic evidence for their protein-protein interactions, further validating their relevance. Two protein-protein interactions, I267L and I8L, I267L__I8L, and B175L and DP79L, B175L__DP79L, are novel PPIs involving viral proteins known to modulate host immune response.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号