Wolf–Hirschhorn syndrome

  • 文章类型: Case Reports
    Wolf-Hirschhorn综合征(WHS),一种由远端4p缺失确定的罕见疾病,其特征是出生前和出生后的生长迟缓,低张力,智力残疾,癫痫,颅面畸形,和先天性融合异常。临床方面取决于删除的大小。我们的目的是在7例4p缺失病例的队列中确定罕见的特定特征,并评估多重连接依赖性探针扩增(MLPA)(廉价且灵敏的测试)组合试剂盒作为诊断测试和选择工具的实用性需要其他调查(染色体微阵列分析-CMA,核型)。对于所有病例,我们都进行了临床检查,确定了主要特征:面部畸形,智力残疾,产后发育延迟,心脏缺陷和低张力。在某些情况下,我们观察到癫痫发作,大脑结构异常,免疫缺陷,和肾脏异常.在相对较少的病例中发现了产前生长迟缓,但是出生后生长障碍是一个持续的特征。在所有情况下,临床诊断通过基因分析得到证实:核型和/或MLPA.总之,肾和脑缺陷,以及免疫缺陷是罕见的表现,应该寻找。虽然CMA是标准测试,根据我们的经验,MLPA也是一种可靠的筛查方法,因为已确定的病例要么由MLPA确认,要么选择进行进一步调查。
    Wolf-Hirschhorn syndrome (WHS), a rare disorder determined by distal 4p deletion, is characterized by a pre and postnatal growth retardation, hypotonia, intellectual disability, epilepsy, craniofacial dysmorphism, and congenital fusion anomalies. The clinical aspects are dependent on the deletion\' size. Our aim was to identify rare specific characteristics in a cohort of seven cases with 4p deletion and to assess the utility of Multiplex ligation-dependent probe amplification (MLPA) (cheap and sensitive test)-combined kits-as a diagnostic test and selection tool for cases that require other investigations (chromosomal microarray analysis-CMA, karyotype). For all cases we conducted a clinical examination with the main features identified: facial dysmorphism, intellectual disability, postnatal development delay, cardiac defects and hypotonia. In some cases, we observed seizures, structural brain abnormalities, immunodeficiencies, and renal anomalies. Prenatal growth retardation was detected in a relatively small number of cases, but postnatal growth failure was a constant feature. In all cases, the clinical diagnosis was confirmed by genetic analyses: karyotype and/or MLPA. In conclusion, renal and brain defects, as well as immunodeficiency are rare manifestations and should be looked for. Although CMA is the standard test, in our experience, MLPA is also a reliable screening method as the identified cases were either confirmed by MLPA or selected for further investigations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    BACKGROUND: Wolf-Hirschhorn (WHS) is a set of congenital physical anomalies and mental retardation associated with a partial deletion of the short arm of chromosome 4. To establish a genotype-phenotype correlation; we carried out a molecular cytogenetic analysis on two Tunisian WHS patients. Patient 1 was a boy of 1-year-old, presented a typical WHS phenotype while patient 2, is a boy of 2 days presented an hypospadias, a micropenis and a cryptorchidie in addition to the typical WHS phenotype. Both the array comparative genomic hybridization and fluorescence in situ hybridization techniques were used.
    RESULTS: Results of the analysis showed that patient 2 had a greater deletion size (4.8 Mb) of chromosome 4 than patient 1 (3.4 Mb). Here, we notice that the larger the deletion, the more genes are likely to be involved, and the more severe the phenotype is likely to be. If we analyze the uncommon deleted region between patient1 and patient 2 we found that the Muscle Segment Homeobox (MSX1) gene is included in this region. MSX1 is a critical transcriptional repressor factor, expressed in the ventral side of the developing anterior pituitary and implicated in gonadotrope differentiation. Msx1 acts as a negative regulatory pituitary development by repressing the gonadotropin releasing hormone (GnRH) genes during embryogenesis. We hypothesized that the deletion of MSX1 in our patient may deregulate the androgen synthesis.
    CONCLUSIONS: Based on the MSX1 gene function, its absence might be indirectly responsible for the hypospadias phenotype by contributing to the spatiotemporal regulation of GnRH transcription during development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Case Reports
    OBJECTIVE: We present prenatal diagnosis and molecular cytogenetic characterization of Wolf-Hirschhorn syndrome (WHS) in a fetus with facial cleft and preaxial polydactyly.
    METHODS: A 37-year-old woman underwent amniocentesis at 18 weeks of gestation because of advanced maternal age, and the result showed an aberrant chromosome 4 or 46,XX,add(4) (p15.3). The woman consulted our clinics at 22 weeks of gestation and requested for repeat amniocentesis. Prenatal ultrasound revealed intrauterine growth restriction, facial cleft, vermian hypoplasia of cerebellum, micrognathia and absent stomach. Conventional cytogenetic analysis was performed on cultured amniocytes, parental bloods and cord blood. Array comparative genomic hybridization (aCGH) and quantitative fluorescent polymerase chain reaction (QF-PCR) were performed on the DNAs extracted from uncultured amniocytes and parental bloods. Fluorescence in situ hybridization (FISH) analysis was performed on cultured metaphase amniocytes.
    RESULTS: aCGH analysis on uncultured amniocytes revealed arr 4p16.3p16.1 (74,447-8,732,731) × 1.0 [GRCh37 (hg19)] with an 8.66-Mb deletion of 4p16.3-p16.1 encompassing 70 [Online Mendelian Inheritance of in Man (OMIM)] genes including ZNF141, FGFRL1, TACC3, LETM1, NSD2 and NELFA. QF-PCR revealed a paternal origin of the distal 4p deletion. Conventional cytogenetic analysis revealed 46,XX,del(4) (p16.1)dn in the fetus. Metaphase FISH analysis confirmed a 4p16 deletion. The parental karyotypes were normal. The pregnancy was subsequently terminated, and a malformed fetus was delivered with typical WHS facial dysmorphism, bilateral cleft lip and palate, and preaxial polydactyly on the right hand.
    CONCLUSIONS: aCGH, QF-PCR and FISH help to delineate the nature of a prenatally defected aberrant chromosome, and the acquired information is useful for genetic counseling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Wolf-Hirschhorn syndrome (WHS) is a rare developmental disorder characterized by intellectual disability and various physical malformations including craniofacial, skeletal, and cardiac defects. These phenotypes, as they involve structures that are derived from the cranial neural crest, suggest that WHS may be associated with abnormalities in neural crest cell (NCC) migration. This syndrome is linked with assorted mutations on the short arm of chromosome 4, most notably the microdeletion of a critical genomic region containing several candidate genes. However, the function of these genes during embryonic development, as well as the cellular and molecular mechanisms underlying the disorder, are still unknown. The model organism Xenopus laevis offers a number of advantages for studying WHS. With the Xenopus genome sequenced, genetic manipulation strategies can be readily designed in order to alter the dosage of the WHS candidate genes. Moreover, a variety of assays are available for use in Xenopus to examine how manipulation of WHS genes leads to changes in the development of tissue and organ systems affected in WHS. In this review article, we highlight the benefits of using X. laevis as a model system for studying human genetic disorders of development, with a focus on WHS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Mitochondrial function is essential for life. Therefore, it is unsurprising that perturbations in mitochondrial function have wide-ranging consequences in the cell. High-throughput screening has identified essential genes required for cellular survival and fitness. One such gene is LETM1. The undisputed function of LETM1 from yeast to human is to maintain the mitochondrial osmotic balance. Osmotic imbalance has been demonstrated to affect mitochondrial morphology, dynamics, and, more recently, metabolism. Whether conservation of osmotic homeostasis by LETM1 occurs by extrusion of excess mitochondrial potassium (K+), calcium (Ca2+), or both has been a matter of dispute over the past 10 years. In this Opinion, we report and discuss recent findings on LETM1 structure, essentiality, and function and its involvement in Wolf-Hirschhorn syndrome (WHS) and seizures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Primary immunodeficiencies (PIDs) are immune disorders resulting from defects in genes involved in immune regulation, and manifesting as an increased susceptibility to infections, autoimmunity, and cancer. However, the molecular basis of some prevalent entities remains poorly understood. Epigenetic control is essential for immune functions, and epigenetic alterations have been identified in different PIDs, including syndromes such as immunodeficiency-centromeric-instability-facial-anomalies, Kabuki, or Wolf-Hirschhorn, among others. Although the epigenetic changes may differ among these PIDs, the reversibility of epigenetic modifications suggests that they might become potential therapeutic targets. Here, we review recent mechanistic advances in our understanding of epigenetic alterations associated with certain PIDs, propose that a fully epigenetically driven mechanism might underlie some PIDs, and discuss the possible prophylactic and therapeutic implications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Case Reports
    Wolf-Hirschhorn syndrome (WHS) is caused by partial deletion of the short arm of chromosome 4 and is characterized by dysmorphic facies, congenital heart defects, intellectual/developmental disability, and increased risk for congenital diaphragmatic hernia (CDH). In this report, we describe a stillborn girl with WHS and a large CDH. A literature review revealed 15 cases of WHS with CDH, which overlap a 2.3-Mb CDH critical region. We applied a machine-learning algorithm that integrates large-scale genomic knowledge to genes within the 4p16.3 CDH critical region and identified FGFRL1 , CTBP1 , NSD2 , FGFR3 , CPLX1 , MAEA , CTBP1-AS2 , and ZNF141 as genes whose haploinsufficiency may contribute to the development of CDH.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The diverse clinical phenotypes of Wolf-Hirschhorn syndrome (WHS) are the result of haploinsufficiency of several genes, one of which, LETM1, encodes a protein of the mitochondrial inner membrane of uncertain function. Here, we show that LETM1 is associated with mitochondrial ribosomes, is required for mitochondrial DNA distribution and expression, and regulates the activity of an ancillary metabolic enzyme, pyruvate dehydrogenase. LETM1 deficiency in WHS alters mitochondrial morphology and DNA organization, as does substituting ketone bodies for glucose in control cells. While this change in nutrient availability leads to the death of fibroblasts with normal amounts of LETM1, WHS-derived fibroblasts survive on ketone bodies, which can be attributed to their reduced dependence on glucose oxidation. Thus, remodeling of mitochondrial nucleoprotein complexes results from the inability of mitochondria to use specific substrates for energy production and is indicative of mitochondrial dysfunction. However, the dysfunction could be mitigated by a modified diet-for WHS, one high in lipids and low in carbohydrates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The present study aimed to increase the knowledge about Wolf-Hirschhorn syndrome (WHS), especially concerning motor function, autism spectrum disorders (ASD), and adapted behavior, but also regarding clinical symptoms in general. Motor function was evaluated via systematic observation. Standardized assessments such as the Vineland Adapted Behavior Scales II (VABS II), the Social Communication Questionnaire (SCQ), and the Child Behavior Checklist (CBCL) or Adult Behavior Checklist (ABCL) were used for the behavioral assessment. In total, two males and eight females between one and 48 years of age with a genetically confirmed diagnosis of WHS and their parents participated in this study. Deletion sizes were known for seven of the ten patients and varied between 55 Kb and 20 Mb. The chromosome coordinates were known for six of them, and none of those had the same break points in their deletion. The main finding in this study was that patients with WHS may have a better outcome regarding motor skills and expressive communication than previously described. We could confirm the main medical findings described earlier, but found also a population with a less severe dysmorphology, fewer congenital malformations, and fewer medical challenges than expected. Sleep problems may persist into adulthood and need a more thorough investigation. Research on possible indications of ASD is strongly needed for targeted interventions. In conclusion, a more thorough assessment of communication, possible ASD, and sleep in larger groups of patients with WHS are needed to confirm and further investigate the findings from this study and to provide more targeted interventions for WHS patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Case Reports
    Wolf-Hirschhorn syndrome (WHS) is a chromosome disorder (4p-syndrome) which is characterized by craniofacial features and epileptic seizures. Here, we report a case of WHS with West syndrome, in whom the seizures were refractory to several antiepileptic drugs but were responsive to the addition of lamotrigine. The patient had epileptic spasms at age seven months. The interictal electroencephalogram was hypsarrhythmic. After adding lamotrigine, seizures decreased remarkably, and spasms disappeared. We have identified and described the very rare case of a girl with WHS who also developed West syndrome. In this case, adding lamotrigine to her medications effectively treated the spasms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号