Rheb

Rheb
  • 文章类型: Preprint
    生殖成功取决于适当建立和维持生物性别。在许多动物中,包括哺乳动物,主要性腺最初是卵巢。我们之前展示了RNA结合蛋白(RNAbp),Rbpms2是斑马鱼卵巢命运所必需的。这里,我们鉴定了卵母细胞中的Rbpms2靶标(Rbpms2结合的卵母细胞RNA;rboRNA)。我们将Rbpms2鉴定为rboRNAs的翻译调节因子,其中包括睾丸因子和核糖体生物发生因子。Further,遗传分析表明,Rbpms2通过mTorc1信号通路促进核仁扩增,特别是通过mTorc1激活针对Rags2(Gator2)组件的间隙活动,缺少卵母细胞(Mios)。累计,我们的研究结果表明,早期性腺细胞处于双重状态,双电势状态,其中Rbpms2充当二进制命运切换。具体来说,Rbpms2抑制睾丸因子并促进卵母细胞因子通过必需的Gator2介导的检查点促进卵母细胞进展,从而在斑马鱼卵子发生中整合性别分化因子和营养利用途径的调节。
    Reproductive success relies on proper establishment and maintenance of biological sex. In many animals, including mammals, the primary gonad is initially ovary in character. We previously showed the RNA binding protein (RNAbp), Rbpms2, is required for ovary fate in zebrafish. Here, we identified Rbpms2 targets in oocytes (Rbpms2-bound oocyte RNAs; rboRNAs). We identify Rbpms2 as a translational regulator of rboRNAs, which include testis factors and ribosome biogenesis factors. Further, genetic analyses indicate that Rbpms2 promotes nucleolar amplification via the mTorc1 signaling pathway, specifically through the mTorc1-activating Gap activity towards Rags 2 (Gator2) component, Missing oocyte (Mios). Cumulatively, our findings indicate that early gonocytes are in a dual poised, bipotential state in which Rbpms2 acts as a binary fate-switch. Specifically, Rbpms2 represses testis factors and promotes oocyte factors to promote oocyte progression through an essential Gator2-mediated checkpoint, thereby integrating regulation of sexual differentiation factors and nutritional availability pathways in zebrafish oogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Akt-Rheb-mTORC1通路在调节细胞生长中起着至关重要的作用,但Akt激活Rheb-mTORC1的潜在机制尚不清楚。在我们之前的研究中,我们发现CBAP在人类T-ALL细胞和原发性肿瘤中高表达,其缺陷导致TSC2/S6K1信号蛋白磷酸化降低,以及受损的细胞增殖和白血病。我们还证明CBAP是Akt介导的TSC2体外磷酸化所必需的。对胰岛素的反应,CBAP对于TSC2/S6K1的磷酸化和TSC2从溶酶体膜的解离也是必需的。在这里,我们报道CBAP与AKT和TSC2相互作用,敲除CBAP或血清饥饿导致Akt/TSC2免疫沉淀复合物中TSC1的增加。发现溶酶体锚定的CBAP可以克服血清饥饿,并以TSC2依赖性方式促进S6K1和4EBP1磷酸化和c-Myc表达。此外,重组CBAP在体外抑制TSC2复合物的GAP活性,导致Rheb-GTP负载增加,可能是由于TSC1和CBAP之间竞争与TSC2的HBD域结合。过表达CBAP的N26区,这对于结合TSC2至关重要,导致mTORC1信号传导的减少和TSC1与TSC2/AKT复合物的关联增加,最终导致对Rheb的GAP活性增加和细胞增殖受损。因此,我们认为CBAP可以调节TSC1-TSC2的稳定性,并促进TSC1/TSC2复合物从溶酶体中易位,从而调节Rheb-mTORC1信号传导。
    The Akt-Rheb-mTORC1 pathway plays a crucial role in regulating cell growth, but the mechanisms underlying the activation of Rheb-mTORC1 by Akt remain unclear. In our previous study, we found that CBAP was highly expressed in human T-ALL cells and primary tumors, and its deficiency led to reduced phosphorylation of TSC2/S6K1 signaling proteins as well as impaired cell proliferation and leukemogenicity. We also demonstrated that CBAP was required for Akt-mediated TSC2 phosphorylation in vitro. In response to insulin, CBAP was also necessary for the phosphorylation of TSC2/S6K1 and the dissociation of TSC2 from the lysosomal membrane. Here we report that CBAP interacts with AKT and TSC2, and knockout of CBAP or serum starvation leads to an increase in TSC1 in the Akt/TSC2 immunoprecipitation complexes. Lysosomal-anchored CBAP was found to override serum starvation and promote S6K1 and 4EBP1 phosphorylation and c-Myc expression in a TSC2-dependent manner. Additionally, recombinant CBAP inhibited the GAP activity of TSC2 complexes in vitro, leading to increased Rheb-GTP loading, likely due to the competition between TSC1 and CBAP for binding to the HBD domain of TSC2. Overexpression of the N26 region of CBAP, which is crucial for binding to TSC2, resulted in a decrease in mTORC1 signaling and an increase in TSC1 association with the TSC2/AKT complex, ultimately leading to increased GAP activity toward Rheb and impaired cell proliferation. Thus, we propose that CBAP can modulate the stability of TSC1-TSC2 as well as promote the translocation of TSC1/TSC2 complexes away from lysosomes to regulate Rheb-mTORC1 signaling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:本研究旨在破译甲羟戊酸-胆固醇途径抑制剂协同作用的分子机制(即,他汀类药物)和氨肽酶抑制剂(APis)对APi敏感和耐药的急性髓系白血病(AML)细胞。方法:U937细胞及其亚系对(6S)-[(R)-2-((S)-羟基-羟基氨基甲酰基-甲氧基-甲基)-4-甲基-戊酰基氨基]-3,3二甲基-丁酸环戊酯(CHR2863)具有低和高水平的获得性抗性,APi前药,作为主要的AML细胞系模型。使用CHR2863和体外无毒浓度的各种他汀类药物在细胞生长抑制后评估药物组合效果。细胞周期效应,和凋亡诱导。机制研究涉及mTOR活化所需的Rheb戊烯化的分析。结果:CHR2863与他汀类药物辛伐他汀有很强的协同作用,氟伐他汀,洛伐他汀,普伐他汀在U937细胞和两个CHR2863耐药亚系中得到证实。在一系列其他人类AML细胞系中也观察到辛伐他汀和CHR2863之间的这种有效协同作用(例如,THP1、MV4-11和KG1),但不是急性淋巴细胞白血病或多种实体瘤细胞系。这种协同活性是:(i)对APis具有特异性(例如,CHR2863和Bestatin),而不是其他细胞毒性剂;(ii)通过增强诱导凋亡和细胞周期停滞来证实,这增加了亚G1级。始终如一,甲羟戊酸和/或焦磷酸法尼酯的共同给药消除了他汀类药物对CHR2863活性的增强作用,提示参与蛋白质异戊二烯化;辛伐他汀受损的Rheb异戊二烯化实验证实了这一点。结论:这些新发现表明,受损的Rheb戊烯化和CHR2863依赖性mTOR抑制的联合抑制作用激发了他汀类药物和APis对人AML细胞的有效协同抑制。
    Aim: This study aimed to decipher the molecular mechanism underlying the synergistic effect of inhibitors of the mevalonate-cholesterol pathway (i.e., statins) and aminopeptidase inhibitors (APis) on APi-sensitive and -resistant acute myeloid leukemia (AML) cells. Methods: U937 cells and their sublines with low and high levels of acquired resistance to (6S)-[(R)-2-((S)-Hydroxy-hydroxycarbamoyl-methoxy-methyl)-4-methyl-pentanoylamino]-3,3 dimethyl-butyric acid cyclopentyl ester (CHR2863), an APi prodrug, served as main AML cell line models. Drug combination effects were assessed with CHR2863 and in vitro non-toxic concentrations of various statins upon cell growth inhibition, cell cycle effects, and apoptosis induction. Mechanistic studies involved analysis of Rheb prenylation required for mTOR activation. Results: A strong synergy of CHR2863 with the statins simvastatin, fluvastatin, lovastatin, and pravastatin was demonstrated in U937 cells and two CHR2863-resistant sublines. This potent synergy between simvastatin and CHR2863 was also observed with a series of other human AML cell lines (e.g., THP1, MV4-11, and KG1), but not with acute lymphocytic leukemia or multiple solid tumor cell lines. This synergistic activity was: (i) specific for APis (e.g., CHR2863 and Bestatin), rather than for other cytotoxic agents; and (ii) corroborated by enhanced induction of apoptosis and cell cycle arrest which increased the sub-G1 fraction. Consistently, statin potentiation of CHR2863 activity was abrogated by co-administration of mevalonate and/or farnesyl pyrophosphate, suggesting the involvement of protein prenylation; this was experimentally confirmed by impaired Rheb prenylation by simvastatin. Conclusion: These novel findings suggest that the combined inhibitory effect of impaired Rheb prenylation and CHR2863-dependent mTOR inhibition instigates a potent synergistic inhibition of statins and APis on human AML cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    mTORC1信号通路调节从酵母到人的多种生物体的细胞生长和代谢,和mTORC1途径的抑制具有治疗癌症或实现长寿的前景。结节性硬化症蛋白复合物(TSCC)是mTORC1信号通路的主要负调节因子,通过水解负载在小GTP酶Rheb上的GTP,它是mTOR的关键激活剂。然而,TSCC的大尺寸(〜700kDa)和复杂的结构组织使其容易降解和失活,从而限制了其潜在的应用。在这项工作中,基于对TSC2稳定域如何确保TSC2-GAP与Rheb的关联从而增强其GAP活性的结构机制的透彻分析和理解,我们设计了两种蛋白质,即SSG-MTM(短稳定域和GAP域-膜靶向基序)和SSG-TSC1N,它们能够像TSCC一样负向调节Rheb和mTORC1,但尺寸大大减小(TSCC尺寸的〜1/15和〜1/9,分别)。生化和细胞生物测定表明,这些设计的蛋白质确实可以促进Rheb的GTP酶活性水解GTP,抑制mTORC1的激酶活性,并防止mTORC1下调分解代谢和自噬。本文受版权保护。保留所有权利。
    The mTORC1 signaling pathway regulates cell growth and metabolism in a variety of organisms from yeast to human, and inhibition of the mTORC1 pathway has the prospect to treat cancer or achieve longevity. The tuberous sclerosis protein complex (TSCC) is a master negative regulator of the mTORC1 signaling pathway through hydrolyzing the GTP loaded on the small GTPase Rheb, which is a key activator of mTOR. However, the large size (~700 kDa) and complex structural organization of TSCC render it vulnerable to degradation and inactivation, thus limiting its potential application. In this work, based on thorough analysis and understanding of the structural mechanism of how the stabilization domain of TSC2 secures the association of TSC2-GAP with Rheb and thus enhances its GAP activity, we designed two proteins, namely SSG-MTM (short stabilization domain and GAP domain-membrane targeting motif) and SSG-TSC1N, which were able to function like TSCC to negatively regulate Rheb and mTORC1, but with much-reduced sizes (~1/15 and ~ 1/9 of the size of TSCC, respectively). Biochemical and cell biological assays demonstrated that these designed proteins indeed could promote the GTPase activity of Rheb to hydrolyze GTP, inhibit the kinase activity of mTORC1, and prevent mTORC1 from down-regulating catabolism and autophagy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    骨肉瘤(OS),这是一种常见的侵袭性原发性骨恶性肿瘤,主要发生在儿童和青少年。据报道,长链非编码RNA(lncRNA)在各种癌症中起关键作用。这里,我们发现lncRNAHOTAIRM1在OS细胞和组织中上调。一系列功能实验表明,HOTAIRM1敲低可减弱OS细胞的增殖并刺激其凋亡。随后的机理研究表明,HOTAIRM1作为竞争性内源性RNA发挥功能,通过形成miR-664b-3p来提高富含脑(Rheb)表达的ras同源物。紧接着,上调的Rheb通过促进OS中mTOR通路介导的Warburg效应促进增殖并抑制细胞凋亡。总之,我们的研究结果表明,HOTAIRM1通过miR-664b-3p/Rheb/mTOR轴增强Warburg效应,从而促进OS细胞的增殖并抑制其凋亡.了解潜在机制和靶向HOTAIRM1/miR-664b-3p/Rheb/mTOR轴对于OS临床治疗至关重要。
    Osteosarcoma (OS), which is a common and aggressive primary bone malignancy, occurs mainly in children and adolescent. Long noncoding RNAs (lncRNAs) are reported to play a pivotal role in various cancers. Here, we found that the lncRNA HOTAIRM1 is upregulated in OS cells and tissues. A set of functional experiments suggested that HOTAIRM1 knockdown attenuated the proliferation and stimulated the apoptosis of OS cells. A subsequent mechanistic study revealed that HOTAIRM1 functions as a competing endogenous RNA to elevate ras homologue enriched in brain (Rheb) expression by sponging miR-664b-3p. Immediately afterward, upregulated Rheb facilitates proliferation and suppresses apoptosis by promoting the mTOR pathway-mediated Warburg effect in OS. In summary, our findings demonstrated that HOTAIRM1 promotes the proliferation and suppresses the apoptosis of OS cells by enhancing the Warburg effect via the miR-664b-3p/Rheb/mTOR axis. Understanding the underlying mechanisms and targeting the HOTAIRM1/miR-664b-3p/Rheb/mTOR axis are essential for OS clinical treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    mTORC1是哺乳动物雷帕霉素复合物1的靶标,是细胞生理学的关键调节剂。脂质代谢产物磷脂酸(PA)结合并激活mTORC1以响应营养物和生长因子。我们回顾了结构发现,并提出了PA激活mTORC1的模型。PA结合mTOR的FK506结合蛋白12(FKBP12)/雷帕霉素结合(FRB)结构域的α4螺旋中的高度保守序列。提出了PA与两个相邻的带正电荷的氨基酸的结合会破坏并缩短螺旋α4的C末端区域。这对底物结合和mTORC1的催化活性都有深远的影响。
    mTORC1, the mammalian target of rapamycin complex 1, is a key regulator of cellular physiology. The lipid metabolite phosphatidic acid (PA) binds to and activates mTORC1 in response to nutrients and growth factors. We review structural findings and propose a model for PA activation of mTORC1. PA binds to a highly conserved sequence in the α4 helix of the FK506 binding protein 12 (FKBP12)/rapamycin-binding (FRB) domain of mTOR. It is proposed that PA binding to two adjacent positively charged amino acids breaks and shortens the C-terminal region of helix α4. This has profound consequences for both substrate binding and the catalytic activity of mTORC1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    中枢神经系统(CNS)中的髓磷脂形成少突胶质细胞和周围神经系统(PNS)中的雪旺细胞对于神经组织的结构和功能稳态至关重要。尽管有某些相似之处,CNS和PNS髓鞘化的调节不同。最近的进展强调了氨基酸传感和生长因子信号通路对少突胶质细胞髓鞘形成的协调调节。在这次审查中,我们讨论了对CNS和PNS髓鞘形成中少突胶质细胞和雪旺氏细胞生物学差异调节的理解的新见解,特别关注生长因子刺激的RHEB-mTORC1和GATOR2介导的氨基酸传感/信号通路的作用。我们还讨论了少突胶质细胞和雪旺细胞的代谢调节及其功能障碍对神经元功能和疾病的影响的最新进展。
    Myelin-forming oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS) are essential for structural and functional homeostasis of nervous tissue. Albeit with certain similarities, the regulation of CNS and PNS myelination is executed differently. Recent advances highlight the coordinated regulation of oligodendrocyte myelination by amino-acid sensing and growth factor signaling pathways. In this review, we discuss novel insights into the understanding of differential regulation of oligodendrocyte and Schwann cell biology in CNS and PNS myelination, with particular focus on the roles of growth factor-stimulated RHEB-mTORC1 and GATOR2-mediated amino-acid sensing/signaling pathways. We also discuss recent progress on the metabolic regulation of oligodendrocytes and Schwann cells and the impact of their dysfunction on neuronal function and disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肺癌是最致命的癌症之一,其中非小细胞肺癌(NSCLC)占85%,5年生存率较低。microRNAs(miRNAs)的失调可参与肿瘤的调控和许多重大疾病的发生。在这项研究中,我们发现miR-199a-3p/5p在NSCLC组织样本中表达下调,细胞系,和病人样本数据库。MiR-199a-3p/5p过表达能显著抑制细胞增殖,迁移能力和促进细胞凋亡。通过软件预测,大脑中富集的ras同源物(Rheb)被鉴定为miR-199a-3p和miR-199a-5p的共同靶标,参与调节mTOR信号通路。在下调Rheb的表达后出现抑制NSCLC的相同效果。此外,我们的研究结果表明,miR-199a可以显著抑制体内肿瘤的生长和转移,这充分证明miR-199a在NSCLC中具有抑瘤作用。此外,miR-199a-3p/5p已显示在NSCLC中增强吉非替尼对EGFR-T790M的敏感性。总的来说,这些结果证明miR-199a-3p/5p可以作为抑癌基因通过靶向Rheb抑制mTOR信号通路,这反过来又抑制了NSCLC的调节过程。因此,探讨pre-miR-199a/Rheb/mTOR轴在非小细胞肺癌中的抗癌作用,miR-199a-3p和miR-199a-5p有可能成为NSCLC的早期诊断标志物或治疗靶标。
    Lung cancer is one of the deadliest cancers, in which non-small cell lung cancer (NSCLC) accounting for 85% and has a low survival rate of 5 years. Dysregulation of microRNAs (miRNAs) can participate in tumor regulation and many major diseases. In this study, we found that miR-199a-3p/5p were down-expressed in NSCLC tissue samples, cell lines, and the patient sample database. MiR-199a-3p/5p overexpression could significantly suppress cell proliferation, migration ability and promote apoptosis. Through software prediction, ras homolog enriched in brain (Rheb) was identified as a common target of miR-199a-3p and miR-199a-5p, which participated in regulating mTOR signaling pathway. The same effect of inhibiting NSCLC appeared after down-regulating the expression of Rheb. Furthermore, our findings revealed that miR-199a can significantly inhibit tumor growth and metastasis in vivo, which fully demonstrates that miR-199a plays a tumor suppressive role in NSCLC. In addition, miR-199a-3p/5p has been shown to enhance the sensitivity of gefitinib to EGFR-T790M in NSCLC. Collectively, these results prove that miR-199a-3p/5p can act as cancer suppressor genes to inhibit the mTOR signaling pathway by targeting Rheb, which in turn inhibits the regulatory process of NSCLC. Thus, to investigate the anti-cancer effect of pre-miR-199a/Rheb/mTOR axis in NSCLC, miR-199a-3p and miR-199a-5p have the potential to become an early diagnostic marker or therapeutic target for NSCLC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Rheb是Ras超家族的一个小的GTPase成员,也是mTORC1的激活剂,mTORC1是细胞代谢的蛋白质复合物主调节因子,增长,和扩散。Rheb/mTORC1通路在增殖性疾病中过度激活,如结节性硬化症综合征和癌症。因此,靶向Rheb依赖性信号是开发新药物治疗的合理策略.Rheb激活溶酶体膜的胞浆表面中的mTORC1。Rheb的法尼化使其锚定在膜上,而其适当的定位取决于异戊二烯结合伴侣PDEδ。最近,已经提出使用PDEδ抑制剂作为抗癌剂,因为它们中断了KRas信号传导,导致KRas依赖性胰腺癌细胞中的抗增殖作用。然而,PDEδ抑制对Rheb/mTORC1途径的影响研究甚少。这里,我们评估了一种新的PDEδ抑制剂的影响,称为Deltasonamide1,在Tsc2空MEF中,Rheb依赖性过度活化的mTORC1细胞系。通过使用酵母双杂交测定法,我们首先验证了Deltasonamide1破坏Rheb-PDEδ相互作用。因此,我们发现Deltasonamide1降低mTORC1靶标的激活。此外,我们的结果表明,Deltasonamide1对Tsc2-nullMEFs具有抗增殖和细胞毒性作用,但对Tsc2-野生型MEFs活力的影响较小.这项工作提出了药理学PDEδ抑制作为靶向结节性硬化症复合体细胞中Rheb/mTORC1异常激活的新方法。
    Rheb is a small GTPase member of the Ras superfamily and an activator of mTORC1, a protein complex master regulator of cell metabolism, growth, and proliferation. Rheb/mTORC1 pathway is hyperactivated in proliferative diseases, such as Tuberous Sclerosis Complex syndrome and cancer. Therefore, targeting Rheb-dependent signaling is a rational strategy for developing new drug therapies. Rheb activates mTORC1 in the cytosolic surface of lysosomal membranes. Rheb\'s farnesylation allows its anchorage on membranes, while its proper localization depends on the prenyl-binding chaperone PDEδ. Recently, the use of PDEδ inhibitors has been proposed as anticancer agents because they interrupted KRas signaling leading to antiproliferative effects in KRas-dependent pancreatic cancer cells. However, the effect of PDEδ inhibition on the Rheb/mTORC1 pathway has been poorly investigated. Here, we evaluated the impact of a new PDEδ inhibitor, called Deltasonamide 1, in Tsc2-null MEFs, a Rheb-dependent overactivated mTORC1 cell line. By using a yeast two-hybrid assay, we first validated that Deltasonamide 1 disrupts Rheb-PDEδ interaction. Accordingly, we found that Deltasonamide 1 reduces mTORC1 targets activation. In addition, our results showed that Deltasonamide 1 has antiproliferative and cytotoxic effects on Tsc2-null MEFs but has less effect on Tsc2-wild type MEFs viability. This work proposes the pharmacological PDEδ inhibition as a new approach to target the abnormal Rheb/mTORC1 activation in Tuberous Sclerosis Complex cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肝性脂肪变性,以肝脏中脂质过度积累为特征,是现代社会的重大健康问题。了解如何改变肝脂代谢/体内平衡导致肝骨病有助于制定治疗干预措施。先前的研究确定线粒体功能障碍是肝骨化的原因。但是,线粒体功能障碍导致脂质代谢改变的分子机制尚不完全清楚。我们之前的工作表明Rheb,一种类似于Ras的小GTPase,不仅激活mTORC1,而且通过丙酮酸脱氢酶(PDH)促进线粒体ATP的产生。在这项研究中,我们进一步证明Rheb控制肝脏甘油三酯分泌并减少小鼠肝脏中饮食诱导的脂质积累。Rheb的遗传缺失导致肝脏快速和自发的脂肪变性,这是意想不到的mTORC1的作用,增强脂质合成,而Rheb转基因可显着减少饮食诱导的肝骨化。结果表明,RhebKO的肝骨病是脂质分泌受损的结果,这与肝细胞的线粒体ATP产生有关。我们的发现强调了Rheb在通过线粒体能量产生调节肝脂质分泌中的作用,具有治疗意义。
    Hepatosteatosis, characterized by excessive accumulation of lipids in the liver, is a major health issue in modern society. Understanding how altered hepatic lipid metabolism/homeostasis causes hepatosteatosis helps to develop therapeutic interventions. Previous studies identify mitochondrial dysfunction as a contributor to hepatosteatosis. But, the molecular mechanisms of mitochondrial dysfunction leading to altered lipid metabolism remain incompletely understood. Our previous work shows that Rheb, a Ras-like small GTPase, not only activates mTORC1 but also promotes mitochondrial ATP production through pyruvate dehydrogenase (PDH). In this study, we further demonstrate that Rheb controls hepatic triglyceride secretion and reduces diet-induced lipid accumulation in a mouse liver. Genetic deletion of Rheb causes rapid and spontaneous steatosis in the liver, which is unexpected from the role of mTORC1 that enhances lipid synthesis, whereas Rheb transgene remarkably reduces diet-induced hepatosteatosis. Results suggest that the hepatosteatosis in Rheb KO is an outcome of impaired lipid secretion, which is linked to mitochondrial ATP production of hepatocytes. Our findings highlight an under-appreciated role of Rheb in the regulation of hepatic lipid secretion through mitochondrial energy production, with therapeutic implication.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号