Myosin Type II

肌球蛋白 II 型
  • 文章类型: Journal Article
    GTPases的Rho家族通过平行诱导肌动蛋白和肌球蛋白的组装和功能来调节肌动球蛋白的收缩性,在细胞力学中起着至关重要的作用。利用果蝇幼虫唾液腺中的大囊泡的胞吐作用作为模型,我们遵循Rho1的时空调节,这反过来又产生了肌动蛋白和肌球蛋白的不同组织模式。囊泡融合后,低水平的活化Rho1扩散到囊泡膜,驱动肌动蛋白成核在一个不均匀的,展开模式。随后,Rho1激活剂RhoGEF2在囊泡膜上分布为不规则的网状结构,以相应的点状模式激活Rho1,并驱动局部肌球蛋白II募集,导致囊泡收缩。在高肌球蛋白II浓度的局部部位发生囊泡膜屈曲和随后的褶皱。这些发现表明,激活的Rho1的不同阈值会产生肌动球蛋白组装的双相模式,在外分泌过程中诱导各向异性膜皱缩。
    The Rho family of GTPases plays a crucial role in cellular mechanics by regulating actomyosin contractility through the parallel induction of actin and myosin assembly and function. Using exocytosis of large vesicles in the Drosophila larval salivary gland as a model, we followed the spatiotemporal regulation of Rho1, which in turn creates distinct organization patterns of actin and myosin. After vesicle fusion, low levels of activated Rho1 reach the vesicle membrane and drive actin nucleation in an uneven, spread-out pattern. Subsequently, the Rho1 activator RhoGEF2 distributes as an irregular meshwork on the vesicle membrane, activating Rho1 in a corresponding punctate pattern and driving local myosin II recruitment, resulting in vesicle constriction. Vesicle membrane buckling and subsequent crumpling occur at local sites of high myosin II concentrations. These findings indicate that distinct thresholds for activated Rho1 create a biphasic mode of actomyosin assembly, inducing anisotropic membrane crumpling during exocrine secretion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞分裂是导致两个新细胞形成的细胞分裂周期的最后一步。成功的胞质分裂需要通过空间上不同的β-和γ-肌动蛋白网络对质膜进行显着的重塑。这些网络是由肌动蛋白成核剂的形式蛋白家族产生的,DIAPH3和DIAPH1。在这里,我们表明β-和γ-肌动蛋白在胞质分裂中发挥专门的和非冗余的作用,并且不能相互替代。具有改变的肌动蛋白同工型特异性的杂合DIAPH1和DIAPH3蛋白在细胞内重新定位细胞动力学肌动蛋白同工型网络的表达,导致细胞动力学衰竭。与此相一致,我们表明β-肌动蛋白网络,但不是γ-肌动蛋白网络,在细胞动力学沟维持非肌肉肌球蛋白II和RhoA是必需的。这些数据表明,独立且空间上不同的肌动蛋白同工型网络形成了独特的相互作用物的支架,这些相互作用物促进了局部的生化活动,以确保成功的细胞分裂。
    Cytokinesis is the final step of the cell division cycle that leads to the formation of two new cells. Successful cytokinesis requires significant remodelling of the plasma membrane by spatially distinct β- and γ-actin networks. These networks are generated by the formin family of actin nucleators, DIAPH3 and DIAPH1 respectively. Here we show that β- and γ-actin perform specialized and non-redundant roles in cytokinesis and cannot substitute for one another. Expression of hybrid DIAPH1 and DIAPH3 proteins with altered actin isoform specificity relocalized cytokinetic actin isoform networks within the cell, causing cytokinetic failure. Consistent with this we show that β-actin networks, but not γ-actin networks, are required for the maintenance of non-muscle myosin II and RhoA at the cytokinetic furrow. These data suggest that independent and spatially distinct actin isoform networks form scaffolds of unique interactors that facilitate localized biochemical activities to ensure successful cell division.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    外胚层器官的发育始于分层的上皮胎盘的形成,随着器官的成形,该上皮胎盘逐渐内陷到下面的间充质中。分泌分子的信号传导对于上皮形态发生至关重要,但是这些信息如何导致细胞重排和组织形状变化仍然是一个悬而未决的问题。使用鼠标牙列作为模型,我们首先确定非肌肉肌球蛋白II对于牙齿上皮内陷至关重要,并显示其通过促进细胞-细胞粘附和持续的趋同细胞运动在基底上发挥功能。Shh信号传导通过经由AKT诱导肌球蛋白II激活来控制这些过程。AKT和肌球蛋白II的药理学诱导也可以挽救由Shh的抑制引起的缺陷。一起,我们的结果支持了一个模型,其中Shh信号通过肌球蛋白II传递,以有效地进行细胞重排以进行适当的牙齿上皮内陷。
    The development of ectodermal organs begins with the formation of a stratified epithelial placode that progressively invaginates into the underlying mesenchyme as the organ takes its shape. Signaling by secreted molecules is critical for epithelial morphogenesis, but how that information leads to cell rearrangement and tissue shape changes remains an open question. Using the mouse dentition as a model, we first establish that non-muscle myosin II is essential for dental epithelial invagination and show that it functions by promoting cell-cell adhesion and persistent convergent cell movements in the suprabasal layer. Shh signaling controls these processes by inducing myosin II activation via AKT. Pharmacological induction of AKT and myosin II can also rescue defects caused by the inhibition of Shh. Together, our results support a model in which the Shh signal is transmitted through myosin II to power effective cellular rearrangement for proper dental epithelial invagination.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    组织褶皱是对器官功能至关重要的结构基序。在肠道里,平坦的上皮弯曲成周期性的褶皱图案会产生绒毛,手指状突起,使营养吸收。然而,驱动绒毛形态发生的分子和机械过程仍不清楚。这里,我们确定了一种主动的机械机制,该机制可以同时图案化和折叠肠上皮以启动绒毛形成。在细胞层面,我们发现PDGFRA+上皮下间充质细胞产生肌球蛋白II依赖性力,足以在邻近组织界面产生模式化曲率.这种对称破坏过程需要通过基质金属蛋白酶介导的组织流化来改变细胞和细胞外基质的相互作用。计算模型,以及体外和体内实验,揭示了这些细胞特征在组织水平上表现为界面张力的差异,该差异通过类似于薄液膜的主动去湿的过程促进间充质聚集和界面弯曲。
    Tissue folds are structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, finger-like protrusions that enable nutrient absorption. However, the molecular and mechanical processes driving villus morphogenesis remain unclear. Here, we identify an active mechanical mechanism that simultaneously patterns and folds the intestinal epithelium to initiate villus formation. At the cellular level, we find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. This symmetry-breaking process requires altered cell and extracellular matrix interactions that are enabled by matrix metalloproteinase-mediated tissue fluidization. Computational models, together with in vitro and in vivo experiments, revealed that these cellular features manifest at the tissue level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active dewetting of a thin liquid film.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    微管通过局部激活粘着斑周转来调节细胞极性和迁移,但是这个过程的机制还没有得到足够的理解。含有KANK家族蛋白的分子复合物将微管与talin连接,粘着斑的主要成分。这里,KANK1介导的微管/talin连锁的局部光遗传学激活促进了微管靶向至单个局灶性粘附和随后的戒断,导致焦点粘附向心滑动和快速拆卸。在这种滑动之前,由于肌球蛋白II和肌动蛋白在粘着灶附近的积累,牵引力会局部增加。击倒Rho激活剂GEF-H1可防止牵引力的发展,并消除了KANK1激活后粘着斑的滑动和分解。其他参与微管驱动的玩家,KANK依赖性粘着斑分解包括激酶ROCK,PAK,和FAK,以及微管/粘着相关蛋白kinesin-1,APC,和αTAT。基于这些数据,我们建立了微管驱动的局灶性粘连破坏的数学模型,该模型涉及局部GEF-H1/RhoA/ROCK依赖性的收缩性激活,这与实验数据是一致的。
    Microtubules regulate cell polarity and migration via local activation of focal adhesion turnover, but the mechanism of this process is insufficiently understood. Molecular complexes containing KANK family proteins connect microtubules with talin, the major component of focal adhesions. Here, local optogenetic activation of KANK1-mediated microtubule/talin linkage promoted microtubule targeting to an individual focal adhesion and subsequent withdrawal, resulting in focal adhesion centripetal sliding and rapid disassembly. This sliding is preceded by a local increase of traction force due to accumulation of myosin-II and actin in the proximity of the focal adhesion. Knockdown of the Rho activator GEF-H1 prevented development of traction force and abolished sliding and disassembly of focal adhesions upon KANK1 activation. Other players participating in microtubule-driven, KANK-dependent focal adhesion disassembly include kinases ROCK, PAK, and FAK, as well as microtubules/focal adhesion-associated proteins kinesin-1, APC, and αTAT. Based on these data, we develop a mathematical model for a microtubule-driven focal adhesion disruption involving local GEF-H1/RhoA/ROCK-dependent activation of contractility, which is consistent with experimental data.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    已知非肌肉肌球蛋白2(NM2)在肌成纤维细胞转分化中起重要作用。纤维化疾病的标志.在JBC最近的一篇文章中,南方等人。证明内源性S100A4,一种钙和NM2结合蛋白在此过程中充当机械效应子。由于细胞外S100A4也通过触发炎症反应参与纤维发生,这种小蛋白似乎通过至少两种不同的机制导致纤维化。
    Non-muscle myosin 2 (NM2) is known to play an important role in myofibroblast transdifferentiation, a hallmark of fibrotic disorders. In a recent JBC article, Southern et al. demonstrate that endogenous S100A4, a calcium- and NM2-binding protein acts as a mechanoeffector in this process. Since extracellular S100A4 is also involved in fibrogenesis by triggering the inflammatory response, this small protein appears to contribute to fibrosis via at least two distinct mechanisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    随着动物发育过程中组织的生长和形状的变化,他们在身体上相互拉动和推动,这些机械相互作用对于形态发生可能很重要。在果蝇原肠胚形成期间,中胚层内陷与外胚层胚带的会聚和延伸在时间上重叠;后者主要是由肌球蛋白II驱动的极化细胞嵌入引起的。这里,我们研究了中胚层内陷对外胚层延伸的影响,检查对肌球蛋白II募集和极化细胞嵌入的可能的机械和机械转导作用。我们发现,胚带外胚层在与胚带延伸(GBE)正交的方向上被中胚层拉伸而变形,显示这些组织之间的机械耦合。然而,我们没有发现响应中胚层内陷的肌球蛋白II平面极化的显着变化,导致邻居交换事件的交界收缩率也是如此。我们得出结论,轴延伸的主要细胞机制,极化细胞嵌入,对中胚层内陷拉力具有鲁棒性。我们发现,然而,中胚层内陷减慢了促进轴延伸的前后细胞伸长的速度,抵消来自内胚层内陷的张力,它沿着GBE的方向拉。
    As tissues grow and change shape during animal development, they physically pull and push on each other, and these mechanical interactions can be important for morphogenesis. During Drosophila gastrulation, mesoderm invagination temporally overlaps with the convergence and extension of the ectodermal germband; the latter is caused primarily by Myosin II-driven polarised cell intercalation. Here, we investigate the impact of mesoderm invagination on ectoderm extension, examining possible mechanical and mechanotransductive effects on Myosin II recruitment and polarised cell intercalation. We find that the germband ectoderm is deformed by the mesoderm pulling in the orthogonal direction to germband extension (GBE), showing mechanical coupling between these tissues. However, we do not find a significant change in Myosin II planar polarisation in response to mesoderm invagination, nor in the rate of junction shrinkage leading to neighbour exchange events. We conclude that the main cellular mechanism of axis extension, polarised cell intercalation, is robust to the mesoderm invagination pull. We find, however, that mesoderm invagination slows down the rate of anterior-posterior cell elongation that contributes to axis extension, counteracting the tension from the endoderm invagination, which pulls along the direction of GBE.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    机械工作是动态细胞过程的基础,从细胞分裂到迁移。细胞机械工作的基本驱动力是肌动蛋白细胞骨架,由丝状肌动蛋白(F-肌动蛋白)和肌球蛋白马达组成,其中力的产生依赖于三磷酸腺苷(ATP)水解。F-肌动蛋白架构,无论是通过交联剂捆扎还是通过成核剂支化,已经成为肌球蛋白II力产生的关键调节剂。然而,目前尚不清楚不同的F-肌动蛋白结构如何影响化学能向机械功的转化。这里,我们采用纯化成分体外重建不同的F-肌动蛋白结构,以研究它们对肌球蛋白ATP水解(消耗)的影响。我们发现,与非交联网络相比,由混合极性F-肌动蛋白组成的F-肌动蛋白束阻碍了网络收缩,并显着降低了ATP消耗率。相反,尽管降低了ATP消耗率,但线性成核网络仍允许网络收缩。令人惊讶的是,支链成核的网络促进高ATP消耗,而没有显著的网络收缩,这表明分支网络在不做功的情况下耗散能量。这项研究建立了F-肌动蛋白结构和肌球蛋白能量消耗之间的联系,阐明F-肌动蛋白结构形成的基本能量原理和机械功的性能。
    Mechanical work serves as the foundation for dynamic cellular processes, ranging from cell division to migration. A fundamental driver of cellular mechanical work is the actin cytoskeleton, composed of filamentous actin (F-actin) and myosin motors, where force generation relies on adenosine triphosphate (ATP) hydrolysis. F-actin architectures, whether bundled by crosslinkers or branched via nucleators, have emerged as pivotal regulators of myosin II force generation. However, it remains unclear how distinct F-actin architectures impact the conversion of chemical energy to mechanical work. Here, we employ in vitro reconstitution of distinct F-actin architectures with purified components to investigate their influence on myosin ATP hydrolysis (consumption). We find that F-actin bundles composed of mixed polarity F-actin hinder network contraction compared to non-crosslinked network and dramatically decelerate ATP consumption rates. Conversely, linear-nucleated networks allow network contraction despite reducing ATP consumption rates. Surprisingly, branched-nucleated networks facilitate high ATP consumption without significant network contraction, suggesting that the branched network dissipates energy without performing work. This study establishes a link between F-actin architecture and myosin energy consumption, elucidating the energetic principles underlying F-actin structure formation and the performance of mechanical work.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Notch通路是一种进化上保守的信号系统,在多个水平上受到复杂的调节,并影响发育的不同方面。为了鉴定参与Notch信号及其调节的新成分,我们进行了蛋白质相互作用筛选,将非肌肉肌球蛋白II拉链(Zip)鉴定为Notch的相互作用伴侣。通过免疫共沉淀研究进一步验证了Notch和Zip之间的物理相互作用。免疫细胞化学分析显示Notch和Zip共定位在相同的细胞质区室中。zip的不同等位基因也显示出与Notch途径组分的强遗传相互作用。Zip的下调导致机翼表型,让人想起Notch功能丧失表型和Notch下游靶标的扰动表达,切和死人。Further,Notch和Zip之间的协同相互作用导致这些Notch靶标的高度异位表达。Zip的过表达增强了激活的Notch诱导的幼虫组织肿瘤表型。Notch-Zip协同作用导致JNK途径的活化,从而导致MMP活化和增殖。一起来看,我们的研究结果表明,Zip可能在Notch信号的调节中起重要作用。
    The Notch pathway is an evolutionarily conserved signaling system that is intricately regulated at multiple levels and it influences different aspects of development. In an effort to identify novel components involved in Notch signaling and its regulation, we carried out protein interaction screens which identified non-muscle myosin II Zipper (Zip) as an interacting partner of Notch. Physical interaction between Notch and Zip was further validated by co-immunoprecipitation studies. Immunocytochemical analyses revealed that Notch and Zip co-localize within same cytoplasmic compartment. Different alleles of zip also showed strong genetic interactions with Notch pathway components. Downregulation of Zip resulted in wing phenotypes that were reminiscent of Notch loss-of-function phenotypes and a perturbed expression of Notch downstream targets, Cut and Deadpan. Further, synergistic interaction between Notch and Zip resulted in highly ectopic expression of these Notch targets. Activated Notch-induced tumorous phenotype of larval tissues was enhanced by over-expression of Zip. Notch-Zip synergy resulted in the activation of JNK pathway that consequently lead to MMP activation and proliferation. Taken together, our results suggest that Zip may play an important role in regulation of Notch signaling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞分裂(OCD)的平面方向对于上皮形态发生和稳态很重要。我们询问力学和前后(AP)模式如何结合起来影响果蝇胚胎上皮原肠胚形成后的第一次分裂。我们分析了数百个细胞分裂,并显示应力各向异性,特别是来自压缩力,可以在中期直接重新定位分裂。应力各向异性通过施加细胞伸长影响强迫症,尽管有丝分裂变圆和过度的间期细胞伸长。在强烈拉长的细胞中,有丝分裂纺锤体使其长度适应,因此它的方向受到,细胞长轴。除了机械提示,有丝分裂纺锤体朝向AP模式的平面极化Myosin-II有组织范围的偏向。这种纺锤体偏向在AP模式突变体中丢失。因此,图案诱导的有丝分裂纺锤体取向偏差在轻度拉长的细胞中超越了机械线索,但在强烈拉长的细胞中,纺锤体被限制在高应力轴上。
    The planar orientation of cell division (OCD) is important for epithelial morphogenesis and homeostasis. Here, we ask how mechanics and antero-posterior (AP) patterning combine to influence the first divisions after gastrulation in the Drosophila embryonic epithelium. We analyse hundreds of cell divisions and show that stress anisotropy, notably from compressive forces, can reorient division directly in metaphase. Stress anisotropy influences the OCD by imposing metaphase cell elongation, despite mitotic rounding, and overrides interphase cell elongation. In strongly elongated cells, the mitotic spindle adapts its length to, and hence its orientation is constrained by, the cell long axis. Alongside mechanical cues, we find a tissue-wide bias of the mitotic spindle orientation towards AP-patterned planar polarised Myosin-II. This spindle bias is lost in an AP-patterning mutant. Thus, a patterning-induced mitotic spindle orientation bias overrides mechanical cues in mildly elongated cells, whereas in strongly elongated cells the spindle is constrained close to the high stress axis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号