Myosin Type II

肌球蛋白 II 型
  • 文章类型: Journal Article
    Ras已被广泛研究作为细胞增殖的启动子,而很少有研究探讨其在移民中的作用。为了研究Ras活性对细胞运动或极性的直接和直接影响,我们专注于RasGAP,变形虫中的C2GAPB和HL-60中性粒细胞和巨噬细胞中的RASAL3。在两种蜂窝系统中,光学地将相应的RasGAP募集到细胞前熄灭了预先存在的突起并改变了迁移方向。然而,当这些各自的RasGAP被均匀地募集到膜时,细胞极化和移动得更快,而瞄准背部夸大了这些影响。这些意想不到的结果减弱Ras活性自然有很强的,趋化性的上下文依赖性后果。RasGAP介导的极化主要取决于肌球蛋白II的活性,并开始于细胞后部的收缩,其次是持续的mTORC2依赖性肌动蛋白聚合在前面。这些实验结果是通过计算模拟捕获的,其中Ras水平控制前后提升反馈回路。发现抑制Ras活性可以对细胞迁移产生违反直觉的影响,这对未来靶向致癌Ras的药物设计策略具有重要意义。
    Ras has been extensively studied as a promoter of cell proliferation, whereas few studies have explored its role in migration. To investigate the direct and immediate effects of Ras activity on cell motility or polarity, we focused on RasGAPs, C2GAPB in Dictyostelium amoebae and RASAL3 in HL-60 neutrophils and macrophages. In both cellular systems, optically recruiting the respective RasGAP to the cell front extinguished pre-existing protrusions and changed migration direction. However, when these respective RasGAPs were recruited uniformly to the membrane, cells polarized and moved more rapidly, whereas targeting to the back exaggerated these effects. These unexpected outcomes of attenuating Ras activity naturally had strong, context-dependent consequences for chemotaxis. The RasGAP-mediated polarization depended critically on myosin II activity and commenced with contraction at the cell rear, followed by sustained mTORC2-dependent actin polymerization at the front. These experimental results were captured by computational simulations in which Ras levels control front- and back-promoting feedback loops. The discovery that inhibiting Ras activity can produce counterintuitive effects on cell migration has important implications for future drug-design strategies targeting oncogenic Ras.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在大多数软体动物中,负责壳发育的早期组织,即,shell领域,显示了形态发生过程中内陷的常见过程。此外,证据表明,壳场内陷不是一个独立的事件,而是反映壳场形态发生整体状态的综合输出。然而,这一保守过程的潜在机制在很大程度上仍然未知.我们以前发现,肌动球蛋白网络(定期组织的丝状肌动蛋白(F-肌动蛋白)和肌球蛋白)可能通过揭示F-肌动蛋白在内陷区域的明显聚集并证明非肌肉肌动蛋白II(NMII)在腹足动物Lottiapeitaihoensis(=Lottiagoshimai)中内陷所必需。这里,我们调查了小GTPases的Rho家族(RhoA,Rac1,和Cdc42),以探索肌动球蛋白网络的上游调节剂。使用小分子抑制剂的功能测定表明,Cdc42调节壳场形态发生的关键事件,包括内陷和细胞重排,而RhoA和Rac1的作用可能是非特异性的或可忽略的。进一步的研究表明,Cdc42蛋白集中在壳场细胞的顶端,并与F-肌动蛋白聚集共定位。这两种分子的聚集可以通过用Cdc42抑制剂处理来防止。这些发现表明了壳场形态发生的可能的调节级联,其中Cdc42在壳场细胞的顶端侧招募F-肌动蛋白(肌动球蛋白网络),然后产生合成的机械力,介导正确的壳场形态发生(细胞形状变化,内陷和细胞重排)。我们的结果强调了细胞骨架在早期壳发育中的作用,并为软体动物壳进化提供了新的见解。
    In most mollusks (conchiferans), the early tissue responsible for shell development, namely, the shell field, shows a common process of invagination during morphogenesis. Moreover, lines of evidence indicated that shell field invagination is not an independent event, but an integrated output reflecting the overall state of shell field morphogenesis. Nevertheless, the underlying mechanisms of this conserved process remain largely unknown. We previously found that actomyosin networks (regularly organized filamentous actin (F-actin) and myosin) may play essential roles in this process by revealing the evident aggregation of F-actin in the invaginated region and demonstrating that nonmuscle myosin II (NM II) is required for invagination in the gastropod Lottia peitaihoensis (= Lottia goshimai). Here, we investigated the roles of the Rho family of small GTPases (RhoA, Rac1, and Cdc42) to explore the upstream regulators of actomyosin networks. Functional assays using small molecule inhibitors suggested that Cdc42 modulates key events of shell field morphogenesis, including invagination and cell rearrangements, while the roles of RhoA and Rac1 may be nonspecific or negligible. Further investigations revealed that the Cdc42 protein was concentrated on the apical side of shell field cells and colocalized with F-actin aggregation. The aggregation of these two molecules could be prevented by treatment with Cdc42 inhibitors. These findings suggest a possible regulatory cascade of shell field morphogenesis in which Cdc42 recruits F-actin (actomyosin networks) on the apical side of shell field cells, which then generates resultant mechanical forces that mediate correct shell field morphogenesis (cell shape changes, invagination and cell rearrangement). Our results emphasize the roles of the cytoskeleton in early shell development and provide new insights into molluscan shell evolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    GTPases的Rho家族通过平行诱导肌动蛋白和肌球蛋白的组装和功能来调节肌动球蛋白的收缩性,在细胞力学中起着至关重要的作用。利用果蝇幼虫唾液腺中的大囊泡的胞吐作用作为模型,我们遵循Rho1的时空调节,这反过来又产生了肌动蛋白和肌球蛋白的不同组织模式。囊泡融合后,低水平的活化Rho1扩散到囊泡膜,驱动肌动蛋白成核在一个不均匀的,展开模式。随后,Rho1激活剂RhoGEF2在囊泡膜上分布为不规则的网状结构,以相应的点状模式激活Rho1,并驱动局部肌球蛋白II募集,导致囊泡收缩。在高肌球蛋白II浓度的局部部位发生囊泡膜屈曲和随后的褶皱。这些发现表明,激活的Rho1的不同阈值会产生肌动球蛋白组装的双相模式,在外分泌过程中诱导各向异性膜皱缩。
    The Rho family of GTPases plays a crucial role in cellular mechanics by regulating actomyosin contractility through the parallel induction of actin and myosin assembly and function. Using exocytosis of large vesicles in the Drosophila larval salivary gland as a model, we followed the spatiotemporal regulation of Rho1, which in turn creates distinct organization patterns of actin and myosin. After vesicle fusion, low levels of activated Rho1 reach the vesicle membrane and drive actin nucleation in an uneven, spread-out pattern. Subsequently, the Rho1 activator RhoGEF2 distributes as an irregular meshwork on the vesicle membrane, activating Rho1 in a corresponding punctate pattern and driving local myosin II recruitment, resulting in vesicle constriction. Vesicle membrane buckling and subsequent crumpling occur at local sites of high myosin II concentrations. These findings indicate that distinct thresholds for activated Rho1 create a biphasic mode of actomyosin assembly, inducing anisotropic membrane crumpling during exocrine secretion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞分裂是导致两个新细胞形成的细胞分裂周期的最后一步。成功的胞质分裂需要通过空间上不同的β-和γ-肌动蛋白网络对质膜进行显着的重塑。这些网络是由肌动蛋白成核剂的形式蛋白家族产生的,DIAPH3和DIAPH1。在这里,我们表明β-和γ-肌动蛋白在胞质分裂中发挥专门的和非冗余的作用,并且不能相互替代。具有改变的肌动蛋白同工型特异性的杂合DIAPH1和DIAPH3蛋白在细胞内重新定位细胞动力学肌动蛋白同工型网络的表达,导致细胞动力学衰竭。与此相一致,我们表明β-肌动蛋白网络,但不是γ-肌动蛋白网络,在细胞动力学沟维持非肌肉肌球蛋白II和RhoA是必需的。这些数据表明,独立且空间上不同的肌动蛋白同工型网络形成了独特的相互作用物的支架,这些相互作用物促进了局部的生化活动,以确保成功的细胞分裂。
    Cytokinesis is the final step of the cell division cycle that leads to the formation of two new cells. Successful cytokinesis requires significant remodelling of the plasma membrane by spatially distinct β- and γ-actin networks. These networks are generated by the formin family of actin nucleators, DIAPH3 and DIAPH1 respectively. Here we show that β- and γ-actin perform specialized and non-redundant roles in cytokinesis and cannot substitute for one another. Expression of hybrid DIAPH1 and DIAPH3 proteins with altered actin isoform specificity relocalized cytokinetic actin isoform networks within the cell, causing cytokinetic failure. Consistent with this we show that β-actin networks, but not γ-actin networks, are required for the maintenance of non-muscle myosin II and RhoA at the cytokinetic furrow. These data suggest that independent and spatially distinct actin isoform networks form scaffolds of unique interactors that facilitate localized biochemical activities to ensure successful cell division.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    揭示主导蛋白质相动力学的分子机制是破译复杂的细胞内调节机制的迫切需要。虽然离子和生物大分子已被广泛认可用于调节蛋白质相分离,基本上构成胞浆化学气氛的小分子对蛋白质相行为的影响很少被理解。在这里,我们报道了维生素C(VC),维持还原性细胞内气氛的关键小分子,驱动肌球蛋白II/F-肌动蛋白(肌动球蛋白)细胞骨架的折返相变。肌动球蛋白束缩合物在低VC状态下分解,并在体外或神经元细胞内部在高VC状态下组装,通过伴随单调VC浓度增加的同时肌球蛋白II蛋白聚集解离过程。基于这一发现,我们采用原位单细胞和单囊泡电化学来证明细胞内VC气氛对儿茶酚胺递质囊泡胞吐的定量调节,即,胞吐释放量在低VC方案中增加,而在高VC方案中减少。此外,我们展示了VC如何通过肌动球蛋白相变和细胞内游离钙水平对膜张力的抵消或协同作用来调节细胞膜-囊泡融合孔动力学。我们的工作揭示了基于小分子的逆转蛋白相调节机制,为化学神经调节和治疗方案扩展铺平了一条新途径。
    Unveiling molecular mechanisms that dominate protein phase dynamics has been a pressing need for deciphering the intricate intracellular modulation machinery. While ions and biomacromolecules have been widely recognized for modulating protein phase separations, effects of small molecules that essentially constitute the cytosolic chemical atmosphere on the protein phase behaviors are rarely understood. Herein, we report that vitamin C (VC), a key small molecule for maintaining a reductive intracellular atmosphere, drives reentrant phase transitions of myosin II/F-actin (actomyosin) cytoskeletons. The actomyosin bundle condensates dissemble in the low-VC regime and assemble in the high-VC regime in vitro or inside neuronal cells, through a concurrent myosin II protein aggregation-dissociation process with monotonic VC concentration increase. Based on this finding, we employ in situ single-cell and single-vesicle electrochemistry to demonstrate the quantitative modulation of catecholamine transmitter vesicle exocytosis by intracellular VC atmosphere, i.e., exocytotic release amount increases in the low-VC regime and decreases in the high-VC regime. Furthermore, we show how VC regulates cytomembrane-vesicle fusion pore dynamics through counteractive or synergistic effects of actomyosin phase transitions and the intracellular free calcium level on membrane tensions. Our work uncovers the small molecule-based reversive protein phase regulatory mechanism, paving a new way to chemical neuromodulation and therapeutic repertoire expansion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    外胚层器官的发育始于分层的上皮胎盘的形成,随着器官的成形,该上皮胎盘逐渐内陷到下面的间充质中。分泌分子的信号传导对于上皮形态发生至关重要,但是这些信息如何导致细胞重排和组织形状变化仍然是一个悬而未决的问题。使用鼠标牙列作为模型,我们首先确定非肌肉肌球蛋白II对于牙齿上皮内陷至关重要,并显示其通过促进细胞-细胞粘附和持续的趋同细胞运动在基底上发挥功能。Shh信号传导通过经由AKT诱导肌球蛋白II激活来控制这些过程。AKT和肌球蛋白II的药理学诱导也可以挽救由Shh的抑制引起的缺陷。一起,我们的结果支持了一个模型,其中Shh信号通过肌球蛋白II传递,以有效地进行细胞重排以进行适当的牙齿上皮内陷。
    The development of ectodermal organs begins with the formation of a stratified epithelial placode that progressively invaginates into the underlying mesenchyme as the organ takes its shape. Signaling by secreted molecules is critical for epithelial morphogenesis, but how that information leads to cell rearrangement and tissue shape changes remains an open question. Using the mouse dentition as a model, we first establish that non-muscle myosin II is essential for dental epithelial invagination and show that it functions by promoting cell-cell adhesion and persistent convergent cell movements in the suprabasal layer. Shh signaling controls these processes by inducing myosin II activation via AKT. Pharmacological induction of AKT and myosin II can also rescue defects caused by the inhibition of Shh. Together, our results support a model in which the Shh signal is transmitted through myosin II to power effective cellular rearrangement for proper dental epithelial invagination.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    收缩肌球蛋白束在各种生理过程中起着至关重要的作用,包括细胞迁移,形态发生,肌肉收缩。肌动球蛋白束的复杂组装涉及肌球蛋白II丝的精确排列和融合,然而,这些过程中涉及的潜在机制和因素仍然难以捉摸。我们的研究表明,LUZP1在协调厚实肌球蛋白束的成熟中起着核心作用。LUZP1缺失导致细胞形态发生异常,迁移,以及对环境施加力量的能力。重要的是,敲除LUZP1导致肌球蛋白II细丝的串联和持续关联的显着缺陷,严重损害肌球蛋白II堆栈的组装。LUZP1敲除细胞中这些过程的破坏提供了对厚的腹侧应力纤维的缺陷组装和相关的细胞收缩异常的机械见解。总的来说,这些结果极大地有助于我们对肌动球蛋白束形成的分子机制的理解,并强调了LUZP1在这一过程中的重要作用。
    Contractile actomyosin bundles play crucial roles in various physiological processes, including cell migration, morphogenesis, and muscle contraction. The intricate assembly of actomyosin bundles involves the precise alignment and fusion of myosin II filaments, yet the underlying mechanisms and factors involved in these processes remain elusive. Our study reveals that LUZP1 plays a central role in orchestrating the maturation of thick actomyosin bundles. Loss of LUZP1 caused abnormal cell morphogenesis, migration, and the ability to exert forces on the environment. Importantly, knockout of LUZP1 results in significant defects in the concatenation and persistent association of myosin II filaments, severely impairing the assembly of myosin II stacks. The disruption of these processes in LUZP1 knockout cells provides mechanistic insights into the defective assembly of thick ventral stress fibers and the associated cellular contractility abnormalities. Overall, these results significantly contribute to our understanding of the molecular mechanism involved in actomyosin bundle formation and highlight the essential role of LUZP1 in this process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    上皮对机械应力的适应通过分子和组织尺度的变化来促进,包括连接的加强,细胞骨架重组,和细胞增殖介导的组织流变学变化。然而,细胞大小在控制这些特性中的作用仍未得到充分研究。我们在斑马鱼胚胎表皮中的实验,在理论估计的指导下,揭示上皮力学和细胞大小之间的联系,证明细胞大小的增加会损害组织的断裂强度和顺应性。我们表明,在缺乏增殖的表皮中E-cadherin水平的增加可以恢复表皮的顺应性,但不能恢复断裂强度。主要由Ezrin-一种顶膜-细胞骨架交联剂调节。我们证明Ezrin通过对抗非肌肉肌球蛋白II介导的收缩性以细胞大小依赖性的方式强化上皮。这项工作揭示了维持细胞大小在调节上皮的机械性能和促进对未来机械应力的保护方面的重要性。
    The epithelial adaptations to mechanical stress are facilitated by molecular and tissue-scale changes that include the strengthening of junctions, cytoskeletal reorganization, and cell-proliferation-mediated changes in tissue rheology. However, the role of cell size in controlling these properties remains underexplored. Our experiments in the zebrafish embryonic epidermis, guided by theoretical estimations, reveal a link between epithelial mechanics and cell size, demonstrating that an increase in cell size compromises the tissue fracture strength and compliance. We show that an increase in E-cadherin levels in the proliferation-deficient epidermis restores epidermal compliance but not the fracture strength, which is largely regulated by Ezrin-an apical membrane-cytoskeleton crosslinker. We show that Ezrin fortifies the epithelium in a cell-size-dependent manner by countering non-muscle myosin-II-mediated contractility. This work uncovers the importance of cell size maintenance in regulating the mechanical properties of the epithelium and fostering protection against future mechanical stresses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    组织褶皱是对器官功能至关重要的结构基序。在肠道里,平坦的上皮弯曲成周期性的褶皱图案会产生绒毛,手指状突起,使营养吸收。然而,驱动绒毛形态发生的分子和机械过程仍不清楚。这里,我们确定了一种主动的机械机制,该机制可以同时图案化和折叠肠上皮以启动绒毛形成。在细胞层面,我们发现PDGFRA+上皮下间充质细胞产生肌球蛋白II依赖性力,足以在邻近组织界面产生模式化曲率.这种对称破坏过程需要通过基质金属蛋白酶介导的组织流化来改变细胞和细胞外基质的相互作用。计算模型,以及体外和体内实验,揭示了这些细胞特征在组织水平上表现为界面张力的差异,该差异通过类似于薄液膜的主动去湿的过程促进间充质聚集和界面弯曲。
    Tissue folds are structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, finger-like protrusions that enable nutrient absorption. However, the molecular and mechanical processes driving villus morphogenesis remain unclear. Here, we identify an active mechanical mechanism that simultaneously patterns and folds the intestinal epithelium to initiate villus formation. At the cellular level, we find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. This symmetry-breaking process requires altered cell and extracellular matrix interactions that are enabled by matrix metalloproteinase-mediated tissue fluidization. Computational models, together with in vitro and in vivo experiments, revealed that these cellular features manifest at the tissue level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active dewetting of a thin liquid film.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    微管通过局部激活粘着斑周转来调节细胞极性和迁移,但是这个过程的机制还没有得到足够的理解。含有KANK家族蛋白的分子复合物将微管与talin连接,粘着斑的主要成分。这里,KANK1介导的微管/talin连锁的局部光遗传学激活促进了微管靶向至单个局灶性粘附和随后的戒断,导致焦点粘附向心滑动和快速拆卸。在这种滑动之前,由于肌球蛋白II和肌动蛋白在粘着灶附近的积累,牵引力会局部增加。击倒Rho激活剂GEF-H1可防止牵引力的发展,并消除了KANK1激活后粘着斑的滑动和分解。其他参与微管驱动的玩家,KANK依赖性粘着斑分解包括激酶ROCK,PAK,和FAK,以及微管/粘着相关蛋白kinesin-1,APC,和αTAT。基于这些数据,我们建立了微管驱动的局灶性粘连破坏的数学模型,该模型涉及局部GEF-H1/RhoA/ROCK依赖性的收缩性激活,这与实验数据是一致的。
    Microtubules regulate cell polarity and migration via local activation of focal adhesion turnover, but the mechanism of this process is insufficiently understood. Molecular complexes containing KANK family proteins connect microtubules with talin, the major component of focal adhesions. Here, local optogenetic activation of KANK1-mediated microtubule/talin linkage promoted microtubule targeting to an individual focal adhesion and subsequent withdrawal, resulting in focal adhesion centripetal sliding and rapid disassembly. This sliding is preceded by a local increase of traction force due to accumulation of myosin-II and actin in the proximity of the focal adhesion. Knockdown of the Rho activator GEF-H1 prevented development of traction force and abolished sliding and disassembly of focal adhesions upon KANK1 activation. Other players participating in microtubule-driven, KANK-dependent focal adhesion disassembly include kinases ROCK, PAK, and FAK, as well as microtubules/focal adhesion-associated proteins kinesin-1, APC, and αTAT. Based on these data, we develop a mathematical model for a microtubule-driven focal adhesion disruption involving local GEF-H1/RhoA/ROCK-dependent activation of contractility, which is consistent with experimental data.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号