Mutation Rate

突变率
  • 文章类型: Journal Article
    微生物和癌细胞中的极端突变率可导致错误诱导的灭绝(EEX)。每个后代细胞最终都会获得致命的突变。在这项工作中,在不断增长的人口中,我们研究了n种不同类型的关键出生-死亡过程作为EEX的出生-死亡模型。每个类型-i细胞以相同的速率独立地分裂(i)→(i)+(i)或突变(i)→(i+1)。细胞总数随着Yule过程呈指数增长,直到出现n型细胞,哪种细胞类型只能以速率1分裂或死亡。这使得整个过程变得至关重要,因此在指数生长阶段之后,所有细胞最终死亡的概率为1。我们为一般的n型临界生死过程提供了长时间的渐近结果。我们发现,k型细胞数的质量函数具有代数和固定尾(大小)-1-χk,当χk=21-k时,对于k=2,_,n,与第一种类型的指数尾巴形成鲜明对比。相同的指数描述了渐近生存概率(时间)-ζk的尾部。我们介绍了该结果在研究生物种群中无法忍受的突变率导致的灭绝中的应用。
    Extreme mutation rates in microbes and cancer cells can result in error-induced extinction (EEX), where every descendant cell eventually acquires a lethal mutation. In this work, we investigate critical birth-death processes with n distinct types as a birth-death model of EEX in a growing population. Each type-i cell divides independently ( i ) → ( i ) + ( i ) or mutates ( i ) → ( i + 1 ) at the same rate. The total number of cells grows exponentially as a Yule process until a cell of type-n appears, which cell type can only divide or die at rate one. This makes the whole process critical and hence after the exponentially growing phase eventually all cells die with probability one. We present large-time asymptotic results for the general n-type critical birth-death process. We find that the mass function of the number of cells of type-k has algebraic and stationary tail ( size ) - 1 - χ k , with χ k = 2 1 - k , for k = 2 , ⋯ , n , in sharp contrast to the exponential tail of the first type. The same exponents describe the tail of the asymptotic survival probability ( time ) - ξ k . We present applications of the results for studying extinction due to intolerable mutation rates in biological populations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    化学诱变驱动的正向遗传筛选在揭示基因功能方面至关重要,然而,识别表型背后的因果突变仍然很费力,阻碍了它们的高通量应用。这里,我们揭示了在C.elegans基因组中由甲基磺酸乙酯(EMS)诱变引起的非均匀突变率,表明突变频率受邻近序列上下文和染色质状态的影响。利用这些因素,我们开发了一个机器学习增强的管道,为秀丽隐杆线虫基因组创建一个全面的EMS诱变概率图。此图基于以下原理操作:在随机突变中靶向特定表型的遗传筛选中富集致病突变。将此图应用于拯救秀丽隐杆线虫纤毛驱动蛋白突变体的遗传抑制因子的全基因组测序(WGS)数据,我们成功地确定了因果突变,而没有产生重组自交系。这种方法可以适用于其他物种,提供了一种可扩展的方法来识别因果基因和振兴正向基因筛选的有效性。
    Chemical mutagenesis-driven forward genetic screens are pivotal in unveiling gene functions, yet identifying causal mutations behind phenotypes remains laborious, hindering their high-throughput application. Here, we reveal a non-uniform mutation rate caused by Ethyl Methane Sulfonate (EMS) mutagenesis in the C. elegans genome, indicating that mutation frequency is influenced by proximate sequence context and chromatin status. Leveraging these factors, we developed a machine learning enhanced pipeline to create a comprehensive EMS mutagenesis probability map for the C. elegans genome. This map operates on the principle that causative mutations are enriched in genetic screens targeting specific phenotypes among random mutations. Applying this map to Whole Genome Sequencing (WGS) data of genetic suppressors that rescue a C. elegans ciliary kinesin mutant, we successfully pinpointed causal mutations without generating recombinant inbred lines. This method can be adapted in other species, offering a scalable approach for identifying causal genes and revitalizing the effectiveness of forward genetic screens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    社会复杂性如何取决于人口规模和文化传播?传统社会的亲属关系结构提供了一个基本的例证,氏族之间的文化规则决定了人们的婚姻可能性。这里,我们提出了一个简单的亲属关系互动模型,该模型考虑了亲属关系和法律合作以及性竞争。在这个模型中,多个社会竞争。社会由具有不同文化特征和交配偏好的多个家庭组成。这些值决定了相互作用,从而决定了家庭的生长速度,并通过突变传递给后代。通过多层次进化模拟,家庭特征和偏好被分组为具有部族间交配偏好的多个部族。它说明了亲属关系结构的出现是相互依存的文化协会的自发形成。新兴的亲属关系结构的特点是婚姻交换的周期长度和社会中的周期数。我们通过数值和分析阐明了它们的参数依赖性。合作与竞争的相对重要性决定了家庭之间是否存在吸引力或排斥。不同的结构进化为局部稳定的吸引子。复杂结构的形成和崩溃的概率取决于家族的数量和突变率,显示特征缩放关系。现在可以基于微观相互作用来探索宏观的亲缘结构,以及它们的环境依赖性和演变的历史因果关系。我们通过参考统计物理学和多层次进化的人种学观察和概念,提出了典型人类社会结构形成的基本因果机制。这种跨学科合作将揭示人类社会的普遍特征。
    How does social complexity depend on population size and cultural transmission? Kinship structures in traditional societies provide a fundamental illustration, where cultural rules between clans determine people\'s marriage possibilities. Here, we propose a simple model of kinship interactions that considers kin and in-law cooperation and sexual rivalry. In this model, multiple societies compete. Societies consist of multiple families with different cultural traits and mating preferences. These values determine interactions and hence the growth rate of families and are transmitted to offspring with mutations. Through a multilevel evolutionary simulation, family traits and preferences are grouped into multiple clans with interclan mating preferences. It illustrates the emergence of kinship structures as the spontaneous formation of interdependent cultural associations. Emergent kinship structures are characterized by the cycle length of marriage exchange and the number of cycles in society. We numerically and analytically clarify their parameter dependence. The relative importance of cooperation versus rivalry determines whether attraction or repulsion exists between families. Different structures evolve as locally stable attractors. The probabilities of formation and collapse of complex structures depend on the number of families and the mutation rate, showing characteristic scaling relationships. It is now possible to explore macroscopic kinship structures based on microscopic interactions, together with their environmental dependence and the historical causality of their evolution. We propose the basic causal mechanism of the formation of typical human social structures by referring to ethnographic observations and concepts from statistical physics and multilevel evolution. Such interdisciplinary collaboration will unveil universal features in human societies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    小鼠作为哺乳动物模型,用于理解新突变的变异性质,一个具有进化和医学意义的问题。先前的研究表明,小鼠的单核苷酸突变(SNM)发生率约为人类的50%。然而,信息主要来自涉及C57BL/6菌株的研究,其他小鼠品系的信息很少。这里,我们研究了在遗传和临床研究中常用的四种近交系的59个小鼠品系中积累的突变(BALB/cAnNRj,C57BL/6JRj,C3H/HeNRj,和FVB/NRj),由兄弟姐妹交配维持8-9代。通过分析Illumina全基因组测序数据,我们估计小鼠新SNM的平均发生率约为μ=6.7×10-9。然而,菌株之间的SNM谱有很大差异,因此,新突变带来的负担也因菌株而异。例如,FVB菌株的频谱明显向C→A变性倾斜,并且可能比其他菌株经历更高的有害负荷,由于谷氨酸密码子中无义突变的频率增加。最后,我们观察到DNA序列环境中新SNM的比率有很大的变化,CpG位点及其邻近核苷酸起着重要的感化。
    The mouse serves as a mammalian model for understanding the nature of variation from new mutations, a question that has both evolutionary and medical significance. Previous studies suggest that the rate of single-nucleotide mutations (SNMs) in mice is ∼50% of that in humans. However, information largely comes from studies involving the C57BL/6 strain, and there is little information from other mouse strains. Here, we study the mutations that accumulated in 59 mouse lines derived from four inbred strains that are commonly used in genetics and clinical research (BALB/cAnNRj, C57BL/6JRj, C3H/HeNRj, and FVB/NRj), maintained for eight to nine generations by brother-sister mating. By analyzing Illumina whole-genome sequencing data, we estimate that the average rate of new SNMs in mice is ∼μ = 6.7 × 10-9. However, there is substantial variation in the spectrum of SNMs among strains, so the burden from new mutations also varies among strains. For example, the FVB strain has a spectrum that is markedly skewed toward C→A transversions and is likely to experience a higher deleterious load than other strains, due to an increased frequency of nonsense mutations in glutamic acid codons. Finally, we observe substantial variation in the rate of new SNMs among DNA sequence contexts, CpG sites, and their adjacent nucleotides playing an important role.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    体细胞随着年龄的增长积累基因组改变;然而,我们对线粒体DNA(mtDNA)镶嵌的理解仍然有限。在这里,我们调查了来自31个供体的三种细胞类型的2,096个克隆的基因组,鉴定出6,451个mtDNA变异体,其异质性水平约为0.3%。虽然这些变体中的大多数是单个克隆所特有的,暗示随年龄的随机获取,409个变体(6%)在多个胚胎谱系中共享,表明它们来自受精卵中的异质体。突变谱表现出复制链偏倚,暗示mtDNA复制是一个主要的突变过程。我们评估了mtDNA突变率(每个碱基对5.0×10-8)和每年10-20的周转频率,它们是塑造mtDNA镶嵌一生的基本组成部分。基本上抑制了mtDNA截短突变向同质的扩展。我们的发现提供了对起源的全面见解,人体细胞中mtDNA镶嵌的动力学和功能后果。
    Somatic cells accumulate genomic alterations with age; however, our understanding of mitochondrial DNA (mtDNA) mosaicism remains limited. Here we investigated the genomes of 2,096 clones derived from three cell types across 31 donors, identifying 6,451 mtDNA variants with heteroplasmy levels of ≳0.3%. While the majority of these variants were unique to individual clones, suggesting stochastic acquisition with age, 409 variants (6%) were shared across multiple embryonic lineages, indicating their origin from heteroplasmy in fertilized eggs. The mutational spectrum exhibited replication-strand bias, implicating mtDNA replication as a major mutational process. We evaluated the mtDNA mutation rate (5.0 × 10-8 per base pair) and a turnover frequency of 10-20 per year, which are fundamental components shaping the landscape of mtDNA mosaicism over a lifetime. The expansion of mtDNA-truncating mutations toward homoplasmy was substantially suppressed. Our findings provide comprehensive insights into the origins, dynamics and functional consequences of mtDNA mosaicism in human somatic cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在每个细胞周期中,DNA复制的时间受到严格调控,以确保基因组的准确复制。在恶性转化过程中,这一过程中改变的程度和意义尚未得到广泛探讨。这里,我们通过分析癌症和正常细胞系的复制时间测序以及952个全基因组测序的肺和乳腺肿瘤,评估了复制时间改变(ART)对癌症进化的影响.我们发现6%-18%的癌症基因组表现出ART,从早期到晚期复制变化的区域显示出增加的突变率和不同的突变特征。而从晚期到早期复制改变的区域包含表达增加的基因,并呈现出APOBEC3介导的突变簇和相关的驱动突变的优势。我们证明了ART在癌症进化过程中相对较早发生,并且ART与染色质结构改变相比,与突变获得具有更强的相关性。
    During each cell cycle, the process of DNA replication timing is tightly regulated to ensure the accurate duplication of the genome. The extent and significance of alterations in this process during malignant transformation have not been extensively explored. Here, we assess the impact of altered replication timing (ART) on cancer evolution by analysing replication-timing sequencing of cancer and normal cell lines and 952 whole-genome sequenced lung and breast tumours. We find that 6%-18% of the cancer genome exhibits ART, with regions with a change from early to late replication displaying an increased mutation rate and distinct mutational signatures. Whereas regions changing from late to early replication contain genes with increased expression and present a preponderance of APOBEC3-mediated mutation clusters and associated driver mutations. We demonstrate that ART occurs relatively early during cancer evolution and that ART may have a stronger correlation with mutation acquisition than alterations in chromatin structure.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    诱变对许多环境因素有反应。因此,进化不仅取决于选择的环境,还取决于确定种群中可用的变异的环境。一种这样的环境依赖性是许多微生物物种中突变率和种群密度之间的反比关系。这里,我们确定了这种突变率可塑性的机制。使用动态计算模型和培养突变率估计,我们发现突变率与种群密度之间的负向关系源于微生物种群控制过氧化氢浓度的集体能力。我们证明了当大肠杆菌种群缺乏过氧化氢降解时,这种与密度相关的突变率可塑性(DAMP)的丧失。我们进一步表明,通过混合种群中野生型细胞的存在,在过氧化物降解缺陷型细胞中恢复了较密集种群中突变率的降低。一起,这些模型引导实验为DAMP提供了机械解释,适用于生活的所有领域,帧突变率是由微生物群落组成形成的动态性状。
    Mutagenesis is responsive to many environmental factors. Evolution therefore depends on the environment not only for selection but also in determining the variation available in a population. One such environmental dependency is the inverse relationship between mutation rates and population density in many microbial species. Here, we determine the mechanism responsible for this mutation rate plasticity. Using dynamical computational modelling and in culture mutation rate estimation, we show that the negative relationship between mutation rate and population density arises from the collective ability of microbial populations to control concentrations of hydrogen peroxide. We demonstrate a loss of this density-associated mutation rate plasticity (DAMP) when Escherichia coli populations are deficient in the degradation of hydrogen peroxide. We further show that the reduction in mutation rate in denser populations is restored in peroxide degradation-deficient cells by the presence of wild-type cells in a mixed population. Together, these model-guided experiments provide a mechanistic explanation for DAMP, applicable across all domains of life, and frames mutation rate as a dynamic trait shaped by microbial community composition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    高的自发突变率对于获得理想的表型和探索基因与表型之间的关系至关重要。如何打破生物体的遗传稳定性,提高突变频率成为研究热点。这里,我们提出了一种实用且可控的进化工具(oMut-Cgts),该工具基于谷氨酸棒杆菌的双遗传水平修饰工程。首先,基于RNA聚合酶α亚基和DNA解旋酶Cgl0854作为胞苷脱氨酶(pmCDA1)的“码头”的转录和复制水平的修饰工程显着增加了突变率,证明pmCDA1在瞬时ssDNA周围的定位是基因组突变所必需的。然后,双遗传水平的联合改造和工程优化使突变率提高了1.02×104倍。基因组测序表明,oMut-Cgts在全基因组范围内执行均匀有效的C:G→T:A转换。此外,oMut-Cgts介导的谷氨酸棒杆菌在胁迫下的快速进化(酸,氧化和乙醇)耐受性证明该工具在多维生物工程(快速表型进化,基因功能挖掘和蛋白质进化)。本研究中提供的快速基因组进化策略有望适用于所有原核细胞的各种应用。
    High spontaneous mutation rate is crucial for obtaining ideal phenotype and exploring the relationship between genes and phenotype. How to break the genetic stability of organisms and increase the mutation frequency has become a research hotspot. Here, we present a practical and controllable evolutionary tool (oMut-Cgts) based on dual genetic level modification engineering for Corynebacterium glutamicum. Firstly, the modification engineering of transcription and replication levels based on RNA polymerase α subunit and DNA helicase Cgl0854 as the \'dock\' of cytidine deaminase (pmCDA1) significantly increased the mutation rate, proving that the localization of pmCDA1 around transient ssDNA is necessary for genome mutation. Then, the combined modification and optimization of engineering at dual genetic level achieved 1.02 × 104-fold increased mutation rate. The genome sequencing revealed that the oMut-Cgts perform uniform and efficient C:G→T:A transitions on a genome-wide scale. Furthermore, oMut-Cgts-mediated rapid evolution of C. glutamicum with stress (acid, oxidative and ethanol) tolerance proved that the tool has powerful functions in multi-dimensional biological engineering (rapid phenotype evolution, gene function mining and protein evolution). The strategies for rapid genome evolution provided in this study are expected to be applicable to a variety of applications in all prokaryotic cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    错配修复(MMR)缺陷型癌症通过靶基因中编码均聚物的逐步侵蚀而演变。奇怪的是,MMR基因MutS同源物6(MSH6)和MutS同源物3(MSH3)也包含编码均聚物,这些是MMR缺陷型癌症的常见突变靶标。增加的MMR突变对MMR缺陷型癌症进化的影响是未知的。在这里,我们表明微卫星不稳定性通过随机移码切换在MSH6和MSH3中切换超可变单核苷酸均聚物运行来调节DNA修复。自发突变和逆转调节亚克隆突变率,突变偏倚与HLA和新抗原多样性。患者来源的类器官证实了这些观察结果,并表明MMR均聚物序列在没有免疫选择的情况下漂移回阅读框,表明突变率升高的健身成本。结合的实验和模拟研究表明,亚克隆免疫选择有利于增加MMR突变。总的来说,我们的数据表明,MMR缺陷型结直肠癌通过使亚克隆突变率和多样性适应免疫选择而助长了瘤内异质性.
    Mismatch repair (MMR)-deficient cancer evolves through the stepwise erosion of coding homopolymers in target genes. Curiously, the MMR genes MutS homolog 6 (MSH6) and MutS homolog 3 (MSH3) also contain coding homopolymers, and these are frequent mutational targets in MMR-deficient cancers. The impact of incremental MMR mutations on MMR-deficient cancer evolution is unknown. Here we show that microsatellite instability modulates DNA repair by toggling hypermutable mononucleotide homopolymer runs in MSH6 and MSH3 through stochastic frameshift switching. Spontaneous mutation and reversion modulate subclonal mutation rate, mutation bias and HLA and neoantigen diversity. Patient-derived organoids corroborate these observations and show that MMR homopolymer sequences drift back into reading frame in the absence of immune selection, suggesting a fitness cost of elevated mutation rates. Combined experimental and simulation studies demonstrate that subclonal immune selection favors incremental MMR mutations. Overall, our data demonstrate that MMR-deficient colorectal cancers fuel intratumor heterogeneity by adapting subclonal mutation rate and diversity to immune selection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物细胞拥有两个膜结合的细胞器,它们含有自己的遗传物质-质体和线粒体。尽管这两个细胞器在同一植物细胞内共存并共同进化,它们的基因组拷贝数不同,细胞内组织,和隔离模式。这些属性如何影响固定时间,或者相反,中性等位基因的丢失目前尚未解决。在这里,我们表明线粒体和质体共享相同的突变率,但与线粒体等位基因相比,质体等位基因保持在异质状态的时间明显更长。通过分析海洋开花植物Zosteramarina种群的遗传变异并模拟细胞器等位基因动态,我们研究了等位基因分离和等位基因固定的决定因素。我们的结果表明,细胞群体的瓶颈,例如,在分枝或播种期间,和分生组织的分层,是线粒体等位基因动力学的重要决定因素。此外,我们认为,延长质体等位基因动力学是由于一个未知的活性质体分配机制。质体和线粒体新等位基因固定在不同组织水平上的差异可能表现为适应过程的差异。我们的研究揭示了细胞器种群遗传学的基本原理,这些原理对于进一步研究分歧事件的长期进化和分子年代至关重要。
    Plant cells harbor two membrane-bound organelles containing their own genetic material-plastids and mitochondria. Although the two organelles coexist and coevolve within the same plant cells, they differ in genome copy number, intracellular organization, and mode of segregation. How these attributes affect the time to fixation or, conversely, loss of neutral alleles is currently unresolved. Here, we show that mitochondria and plastids share the same mutation rate, yet plastid alleles remain in a heteroplasmic state significantly longer compared with mitochondrial alleles. By analyzing genetic variants across populations of the marine flowering plant Zostera marina and simulating organelle allele dynamics, we examine the determinants of allele segregation and allele fixation. Our results suggest that the bottlenecks on the cell population, e.g. during branching or seeding, and stratification of the meristematic tissue are important determinants of mitochondrial allele dynamics. Furthermore, we suggest that the prolonged plastid allele dynamics are due to a yet unknown active plastid partition mechanism. The dissimilarity between plastid and mitochondrial novel allele fixation at different levels of organization may manifest in differences in adaptation processes. Our study uncovers fundamental principles of organelle population genetics that are essential for further investigations of long-term evolution and molecular dating of divergence events.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号