Muscle Proteins

肌肉蛋白质类
  • 文章类型: Journal Article
    在衰老或其他病理状况期间,骨骼肌的功能和质量下降会增加与衰老有关的继发性疾病的发生率,最终导致寿命和生活质量下降。已经做出了很多努力来推测肌肉萎缩的分子机制并开发用于改善肌肉功能的工具。增强线粒体功能被认为是增加肌肉功能和健康的关键。这项研究的目的是评估gloiopeltistenax(GTAE)的水提取物对地塞米松(DEX)引起的肌生成和肌肉萎缩的影响。GTAE促进肌源性分化,伴随着过氧化物酶体增殖物激活受体γ共激活因子α(PGC-1α)表达和成肌细胞培养中线粒体含量的增加。此外,GTAE缓解了DEX介导的肌管萎缩,该萎缩可归因于Akt介导的对Atrogin/MuRF1途径的抑制。此外,一项使用DEX诱导的肌肉萎缩小鼠模型的体内研究证明了GTAE在保护肌肉免受萎缩和增强线粒体生物发生和功能方面的功效。即使在萎缩的情况下。一起来看,这项研究表明,GTAE显示出作为增强肌肉功能和防止肌肉萎缩的营养药物的有利潜力。
    The decline in the function and mass of skeletal muscle during aging or other pathological conditions increases the incidence of aging-related secondary diseases, ultimately contributing to a decreased lifespan and quality of life. Much effort has been made to surmise the molecular mechanisms underlying muscle atrophy and develop tools for improving muscle function. Enhancing mitochondrial function is considered critical for increasing muscle function and health. This study is aimed at evaluating the effect of an aqueous extract of Gloiopeltis tenax (GTAE) on myogenesis and muscle atrophy caused by dexamethasone (DEX). The GTAE promoted myogenic differentiation, accompanied by an increase in peroxisome proliferator-activated receptor γ coactivator α (PGC-1α) expression and mitochondrial content in myoblast cell culture. In addition, the GTAE alleviated the DEX-mediated myotube atrophy that is attributable to the Akt-mediated inhibition of the Atrogin/MuRF1 pathway. Furthermore, an in vivo study using a DEX-induced muscle atrophy mouse model demonstrated the efficacy of GTAE in protecting muscles from atrophy and enhancing mitochondrial biogenesis and function, even under conditions of atrophy. Taken together, this study suggests that the GTAE shows propitious potential as a nutraceutical for enhancing muscle function and preventing muscle wasting.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    射血分数保留的心力衰竭(HFpEF)的特征是生物力学功能失调的心肌细胞。潜在的细胞变化包括心肌肌动蛋白表达紊乱和肌动蛋白磷酸化不足,导致肌动蛋白丝变硬。除了这些经过充分研究的心肌细胞水平的改变,运动不耐受是由骨骼肌(SKM)分子改变引起的HFpEF的另一个标志.目前,在HFpEF的SKM中缺乏关于Titin调制的数据。因此,本研究的目的是分析肢体SKM(胫骨前(TA))和diaphragm(Dia)的分子改变,作为一个更中心的SKM,专注于Titin,肌动蛋白磷酸化,和收缩调节蛋白。这项研究是用肌肉组织进行的,从32周龄雌性ZSF-1大鼠获得,建立了HFpEF大鼠模型。我们的结果表明,在肢体SKM中Titin过度磷酸化,基于PEVK区域增强的磷酸化,已知会导致Titin长丝变硬。这种过度磷酸化可以通过高强度间歇训练(HIIT)逆转。此外,肌动蛋白的磷酸化状态与肢体SKM中的肌肉力量之间存在负相关。对于Dia来说,未检测到肌动蛋白磷酸化状态的改变。在以往研究数据的支持下,这表明Dia在HFpEF中具有运动效果。关于收缩调节蛋白的表达,可以检测到Dia和肢体SKM之间的显着差异,支持肢体SKM的肌肉萎缩和功能障碍,但不是在Dia.总之,这些数据表明,在HFpEF中,肌动蛋白硬化与运动不耐受的出现之间存在相关性,以及不同SKM组之间的差异调节。
    Heart failure with preserved ejection fraction (HFpEF) is characterized by biomechanically dysfunctional cardiomyocytes. Underlying cellular changes include perturbed myocardial titin expression and titin hypophosphorylation leading to titin filament stiffening. Beside these well-studied alterations at the cardiomyocyte level, exercise intolerance is another hallmark of HFpEF caused by molecular alterations in skeletal muscle (SKM). Currently, there is a lack of data regarding titin modulation in the SKM of HFpEF. Therefore, the aim of the present study was to analyze molecular alterations in limb SKM (tibialis anterior (TA)) and in the diaphragm (Dia), as a more central SKM, with a focus on titin, titin phosphorylation, and contraction-regulating proteins. This study was performed with muscle tissue, obtained from 32-week old female ZSF-1 rats, an established a HFpEF rat model. Our results showed a hyperphosphorylation of titin in limb SKM, based on enhanced phosphorylation at the PEVK region, which is known to lead to titin filament stiffening. This hyperphosphorylation could be reversed by high-intensity interval training (HIIT). Additionally, a negative correlation occurring between the phosphorylation state of titin and the muscle force in the limb SKM was evident. For the Dia, no alterations in the phosphorylation state of titin could be detected. Supported by data of previous studies, this suggests an exercise effect of the Dia in HFpEF. Regarding the expression of contraction regulating proteins, significant differences between Dia and limb SKM could be detected, supporting muscle atrophy and dysfunction in limb SKM, but not in the Dia. Altogether, these data suggest a correlation between titin stiffening and the appearance of exercise intolerance in HFpEF, as well as a differential regulation between different SKM groups.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:先天性肌无力综合征(CMS)是神经肌肉领域最具挑战性的鉴别诊断之一,由不同的基因型和表型组成。对接蛋白7(Dok-7)中的突变是CMS的常见原因。DOK7CMS需要与其他CMS类型不同的处理。关于DOK7的特殊考虑和神经学家面临的挑战,我们描述了7例DOK7患者,并评估了他们对治疗的反应.
    方法:作者在德黑兰和克尔曼大学医学院的神经肌肉诊所访问了这些患者。他们根据临床发现和神经生理学研究诊断这些患者,全外显子组测序证实。对于每个病人来说,我们尝试了独特的药物治疗,并记录了临床反应.
    结果:症状从出生开始,直到33岁,平均发病年龄为12.5岁。常见症状为:肢体腰带无力6例,波动症状5例,下垂症状4例,双面无力3例,眼外运动减少3例,延髓症状2例,呼吸困难2例,3-HzRNS减少6例。沙丁胺醇是最有效的。c.1124_1127dupTGCC是最常见的变异;三名患者有这种变异。
    结论:我们强烈建议神经科医师在有这些症状和相似家族史的患者中考虑CMS。我们建议将沙丁胺醇作为DOK7患者的首选治疗选择。
    BACKGROUND: Congenital myasthenic syndromes (CMS) are among the most challenging differential diagnoses in the neuromuscular domain, consisting of diverse genotypes and phenotypes. A mutation in the Docking Protein 7 (Dok-7) is a common cause of CMS. DOK7 CMS requires different treatment than other CMS types. Regarding DOK7\'s special considerations and challenges ahead of neurologists, we describe seven DOK7 patients and evaluate their response to treatment.
    METHODS: The authors visited these patients in the neuromuscular clinics of Tehran and Kerman Universities of Medical Sciences Hospitals. They diagnosed these patients based on clinical findings and neurophysiological studies, which Whole Exome Sequencing confirmed. For each patient, we tried unique medications and recorded the clinical response.
    RESULTS: The symptoms started from birth to as late as the age of 33, with the mean age of onset being 12.5. Common symptoms were: Limb-girdle weakness in 6, fluctuating symptoms in 5, ptosis in 4, bifacial weakness in 3, reduced extraocular movement in 3, bulbar symptoms in 2 and dyspnea in 2 3-Hz RNS was decremental in 5 out of 6 patients. Salbutamol was the most effective. c.1124_1127dupTGCC is the most common variant; three patients had this variant.
    CONCLUSIONS: We strongly recommend that neurologists consider CMS in patients with these symptoms and a similar familial history. We recommend prescribing salbutamol as the first-choice treatment option for DOK7 patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    骨骼肌废用期会导致肌肉质量快速下降(萎缩),肌肉蛋白质合成(MPS)和肌肉蛋白质分解(MPB)之间的不平衡从根本上得到了支持。已经研究了导致废用过程中肌肉蛋白质平衡调节改变的分子机制的复杂相互作用,但很少在人类环境中合成。这篇叙述性综述讨论了肌肉废用的人体模型以及随之而来的肌肉萎缩的反指数率。探索了导致蛋白质平衡改变的分子过程,特别关注生长和分解信号通路,线粒体适应和神经肌肉功能障碍。最后,重点强调了废用萎缩文献中的关键研究空白,为增强我们对人类废用萎缩的机制理解提供了未来的途径。
    Periods of skeletal muscle disuse lead to rapid declines in muscle mass (atrophy), which is fundamentally underpinned by an imbalance between muscle protein synthesis (MPS) and muscle protein breakdown (MPB). The complex interplay of molecular mechanisms contributing to the altered regulation of muscle protein balance during disuse have been investigated but rarely synthesised in the context of humans. This narrative review discusses human models of muscle disuse and the ensuing inversely exponential rate of muscle atrophy. The molecular processes contributing to altered protein balance are explored, with a particular focus on growth and breakdown signalling pathways, mitochondrial adaptations and neuromuscular dysfunction. Finally, key research gaps within the disuse atrophy literature are highlighted providing future avenues to enhance our mechanistic understanding of human disuse atrophy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    慢性炎症导致肌肉萎缩。因为大多数炎症细胞因子信号是通过TGF-β激活的激酶-1(TAK1)激活介导的,炎性细胞因子诱导的肌肉萎缩可通过抑制TAK1活性得到改善.进行本研究以阐明TAK1抑制是否可以改善炎症诱导的肌肉萎缩。用少量甘露聚糖作为佐剂处理作为自身免疫性关节炎动物模型的SKG/Jcl小鼠以增强TNF-α和IL-1β的产生。这些炎性细胞因子的增加导致SKG/Jcl小鼠中肌肉质量和强度的降低以及关节炎的诱导。肌纤维的这些变化是通过TAK1的磷酸化介导的,TAK1通过NF-κB激活下游信号级联,p38MAPK,和ERK通路,导致肌肉生长抑制素表达增加。然后肌肉生长抑制素不仅通过减少MyoD1表达而且通过增强Atrogin-1和Murf1表达来减少肌肉蛋白的表达。TAK1抑制剂,LL-Z1640-2阻止了所有细胞因子诱导的肌肉萎缩变化。因此,TAK1抑制不仅可以成为关节破坏的新治疗靶点,也可以成为炎性细胞因子诱导的肌肉萎缩的新治疗靶点。
    Chronic inflammation causes muscle wasting. Because most inflammatory cytokine signals are mediated via TGF-β-activated kinase-1 (TAK1) activation, inflammatory cytokine-induced muscle wasting may be ameliorated by the inhibition of TAK1 activity. The present study was undertaken to clarify whether TAK1 inhibition can ameliorate inflammation-induced muscle wasting. SKG/Jcl mice as an autoimmune arthritis animal model were treated with a small amount of mannan as an adjuvant to enhance the production of TNF-α and IL-1β. The increase in these inflammatory cytokines caused a reduction in muscle mass and strength along with an induction of arthritis in SKG/Jcl mice. Those changes in muscle fibers were mediated via the phosphorylation of TAK1, which activated the downstream signaling cascade via NF-κB, p38 MAPK, and ERK pathways, resulting in an increase in myostatin expression. Myostatin then reduced the expression of muscle proteins not only via a reduction in MyoD1 expression but also via an enhancement of Atrogin-1 and Murf1 expression. TAK1 inhibitor, LL-Z1640-2, prevented all the cytokine-induced changes in muscle wasting. Thus, TAK1 inhibition can be a new therapeutic target of not only joint destruction but also muscle wasting induced by inflammatory cytokines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在患有与血糖稳态受损相关的疾病的女性中,不孕症的发病率明显更高,如胰岛素抵抗。葡萄糖代谢缺陷会干扰受精;然而,这种干扰的分子机制尚不清楚.Smoothelin样蛋白1(SMTNL1)从肌肉和类固醇激素反应性组织中分离出来,并通过抑制肌球蛋白磷酸酶(MP)全酶来调节各种细胞类型的收缩功能。此外,SMTNL-1在Ser301被蛋白激酶A磷酸化后,易位到细胞核,并作为孕酮受体B的转录共激活因子发挥作用。SMTNL1无效小鼠表现出降低的生殖适应性并且更容易患2型糖尿病。然而,SMTNL1在子宫内膜上皮细胞中的作用尚不清楚。
    通过免疫荧光染色研究了SMTNL1过表达在妊娠和妊娠糖尿病子宫内膜上皮细胞模型中的作用,细胞迁移,和半定量Western印迹分析和葡萄糖摄取测定。
    我们发现SMTNL1以依赖孕酮的方式促进子宫内膜上皮细胞的分化,从而减轻胰岛素抵抗。此外,SMTNL1通过抑制MP的调节亚基MYPT1的表达,阻碍了妊娠糖尿病模型中上皮细胞的迁移能力,和全酶的活性,导致20kDa调节性肌球蛋白轻链的磷酸化增加。SMTNL1还通过增加PP2A和DUPS9蛋白磷酸酶的基因表达而充当胰岛素增敏剂,导致ERK1/2活性降低,因此,在妊娠期糖尿病条件下降低Ser612的IRS-1磷酸化。
    SMTNL1可能与妊娠糖尿病或其他代谢紊乱中高血糖条件下孕酮依赖性抑制子宫内膜上皮细胞迁移和子宫内膜胰岛素敏感性具有治疗相关性。
    UNASSIGNED: The incidence of infertility is significantly higher in women with diseases linked to impaired glucose homeostasis, such as insulin resistance. Defective glucose metabolism interferes with fertilization; however, the molecular mechanism underlying this interference is unclear. Smoothelin-like protein 1 (SMTNL1) was isolated from muscle and steroid hormone-responsive tissues and regulates the contractile functions of various cell types through the inhibition of myosin phosphatase (MP) holoenzyme. In addition, SMTNL-1 after phosphorylation at Ser301 by protein kinase A translocates to the nucleus and functions as a transcriptional co-activator of the progesterone receptor-B. SMTNL1 null mice exhibit reduced reproductive fitness and are more prone to type 2 diabetes mellitus. However, the role of SMTNL1 in endometrial epithelial cells is not known.
    UNASSIGNED: The effect of SMTNL1 overexpression was investigated in pregnancy and in gestational diabetic endometrial epithelial cell models by immunofluorescent staining, cell migration, and semi quantitative Western blot analysis and glucose uptake assay.
    UNASSIGNED: We show that SMTNL1 promotes the differentiation of endometrial epithelial cells in a progesterone-dependent manner to attenuate insulin resistance. Furthermore, SMTNL1 hampers the migration capacity of epithelial cells in a gestational diabetes model by inhibiting the expression of MYPT1, the regulatory subunit of MP, and the activity of the holoenzyme, resulting in increased phosphorylation of the 20 kDa regulatory myosin light chain. SMTNL1 also acts as an insulin-sensitizing agent by increasing the gene expression of PP2A and DUPS9 protein phosphatases, resulting in decreased ERK1/2 activity and, hence, decreasing the phosphorylation of IRS-1 at Ser612 under gestational diabetes conditions.
    UNASSIGNED: SMTNL1 may have therapeutic relevance to the progesterone-dependent inhibition of endometrial epithelial cell migration under hyperglycemic conditions and insulin sensitivity in the endometrium in gestational diabetes or other metabolic disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Connectin(也称为titin)是一种巨大的横纹肌蛋白,通过为肌节提供弹性而充当分子弹簧。Novex-3是连接蛋白的短剪接变体,其生理功能仍然未知。我们最近使用体外分析证明,除了肌节表达外,novex-3也仅在胎儿时期在心肌细胞核中表达,它提供对心肌细胞核的弹性/顺应性,并促进胎儿的心肌细胞增殖,暗示了非肌节功能。这里,我们分析了novex-3基因敲除小鼠,以评估该功能在体内心脏病理生理学中的作用.novex-3的缺乏损害了胎儿心肌细胞的增殖并诱导了新生儿单个心肌细胞的增大。在成年人中,novex-3缺乏导致腔室扩张和收缩功能障碍,与Ca2+失调有关,导致寿命缩短。机理分析揭示了受损的增殖和异常的核力学之间可能存在关联,包括在敲除的心肌细胞中位于外周的更硬的核与稳定的环核微管。虽然潜在的因果关系还没有完全阐明,这些数据表明novex-3在心脏病理生理学中具有重要的非肌节功能,并且是心肌细胞增殖的早期贡献者。
    Connectin (also known as titin) is a giant striated muscle protein that functions as a molecular spring by providing elasticity to the sarcomere. Novex-3 is a short splice variant of connectin whose physiological function remains unknown. We have recently demonstrated using in vitro analyses that in addition to sarcomere expression, novex-3 was also expressed in cardiomyocyte nuclei exclusively during fetal life, where it provides elasticity/compliance to cardiomyocyte nuclei and promotes cardiomyocyte proliferation in the fetus, suggesting a non-sarcomeric function. Here, we analyzed novex-3 knockout mice to assess the involvement of this function in cardiac pathophysiology in vivo. Deficiency of novex-3 compromised fetal cardiomyocyte proliferation and induced the enlargement of individual cardiomyocytes in neonates. In adults, novex-3 deficiency resulted in chamber dilation and systolic dysfunction, associated with Ca2+ dysregulation, resulting in a reduced life span. Mechanistic analyses revealed a possible association between impaired proliferation and abnormal nuclear mechanics, including stiffer nuclei positioned peripherally with stabilized circumnuclear microtubules in knockout cardiomyocytes. Although the underlying causal relationships were not fully elucidated, these data show that novex-3 has a vital non-sarcomeric function in cardiac pathophysiology and serves as an early contributor to cardiomyocyte proliferation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    费城染色体阳性(Ph)白血病是一种致命的血液恶性肿瘤。尽管使用酪氨酸激酶抑制剂(TKIs)的标准治疗在延长患者生存期方面取得了显著成功,不容忍,复发,对于Ph+白血病患者,TKI耐药仍然是严重的问题。这里,我们报道了一个新的白血病发生过程,其中RAPSYN和BCR-ABL共同出现在Ph+白血病中,和RAPSKYN介导BCR-ABL的neddylation。因此,NeddylatedBCR-ABL通过竞争其c-CBL介导的降解来增强稳定性。此外,SRC磷酸化RAPSYN以激活其NEDD8E3连接酶活性,促进BCR-ABL稳定和疾病进展。此外,与基于PROTAC的降解剂的体内无效相反,RAPPYN表达的缺失,或其连接酶活性降低BCR-ABL稳定性,反过来,抑制肿瘤的形成和生长。总的来说,这些发现代表了癌蛋白和白血病细胞的酪氨酸激酶活性的替代方法,并为靶向RAPSYN介导的BCR-ABLneddylation治疗Ph+白血病提供了理论基础.
    慢性粒细胞白血病(简称CML)约占美国成年人诊断的所有血癌的15%。该病症的特征在于不成熟免疫细胞的过度产生,其干扰适当的血液功能。它与基因重组(一种突变)有关,该基因重组导致白细胞产生异常的“BCR-ABL”酶,该酶始终处于打开状态。反过来,这种过度活跃的蛋白质会导致细胞活得更长,分裂不受控制。目前可用于控制疾病的一些最有效的药物通过阻断BCR-ABL的活性起作用。然而,随着时间的推移,某些患者可能会对这些治疗产生抗药性,导致他们复发。因此,需要其他方法来控制这种疾病;特别是,一个有希望的研究途径在于探索是否有可能减少患病细胞中存在的酶的量。作为这项努力的一部分,赵,戴,Li,张等人。专注于RAPPYN,CML细胞中以前未知的支架蛋白。在其他组织中,它最近被证明参与neddylation-一种过程,蛋白质接受某些化学“标签”,从而改变它们的行为方式。实验表明,与健康志愿者相比,RAPSYN在CML患者的白细胞中以高得多的水平存在。通过实验降低CML细胞中RAPSYN的含量导致这些细胞的分裂速度降低-无论是在培养皿中还是在小鼠体内注射时,同时也与BCR-ABL水平降低有关。其他生化实验表明,RAPSYN坚持与BCR-ABL添加化学“标签”,保护异常蛋白质免受降解,提高其总体水平。最后,团队展示了SRC,一种在新出现的癌症中经常失调的酶,可以激活RAPSYN进行Neddylation的能力;这种机制可以促进BCR-ABL稳定,反过来,疾病进展。一起来看,这些实验表明了一种控制BCR-ABL水平的新方法。未来的研究应该调查RAPSYN是否也能稳定白血病对现有药物耐药的患者的BCR-ABL。最终,RAPSYN可能为克服CML患者的耐药性提供新的靶点。
    Philadelphia chromosome-positive (Ph+) leukemia is a fatal hematological malignancy. Although standard treatments with tyrosine kinase inhibitors (TKIs) have achieved remarkable success in prolonging patient survival, intolerance, relapse, and TKI resistance remain serious issues for patients with Ph+ leukemia. Here, we report a new leukemogenic process in which RAPSYN and BCR-ABL co-occur in Ph+ leukemia, and RAPSYN mediates the neddylation of BCR-ABL. Consequently, neddylated BCR-ABL enhances the stability by competing its c-CBL-mediated degradation. Furthermore, SRC phosphorylates RAPSYN to activate its NEDD8 E3 ligase activity, promoting BCR-ABL stabilization and disease progression. Moreover, in contrast to in vivo ineffectiveness of PROTAC-based degraders, depletion of RAPSYN expression, or its ligase activity decreased BCR-ABL stability and, in turn, inhibited tumor formation and growth. Collectively, these findings represent an alternative to tyrosine kinase activity for the oncoprotein and leukemogenic cells and generate a rationale of targeting RAPSYN-mediated BCR-ABL neddylation for the treatment of Ph+ leukemia.
    Chronic myeloid leukemia (CML for short) accounts for about 15% of all blood cancers diagnosed in adults in the United States. The condition is characterized by the overproduction of immature immune cells that interfere with proper blood function. It is linked to a gene recombination (a type of mutation) that leads to white blood cells producing an abnormal ‘BCR-ABL’ enzyme which is always switched on. In turn, this overactive protein causes the cells to live longer and divide uncontrollably. Some of the most effective drugs available to control the disease today work by blocking the activity of BCR-ABL. Yet certain patients can become resistant to these treatments over time, causing them to relapse. Other approaches are therefore needed to manage this disease; in particular, a promising avenue of research consists in exploring whether it is possible to reduce the amount of the enzyme present in diseased cells. As part of this effort, Zhao, Dai, Li, Zhang et al. focused on RAPSYN, a scaffolding protein previously unknown in CML cells. In other tissues, it has recently been shown to participate in neddylation – a process by which proteins receive certain chemical ‘tags’ that change the way they behave. The experiments revealed that, compared to healthy volunteers, RAPSYN was present at much higher levels in the white blood cells of CML patients. Experimentally lowering the amount of RAPSYN in CML cells led these to divide less quickly – both in a dish and when injected in mice, while also being linked to decreased levels of BCR-ABL. Additional biochemical experiments indicated that RAPSYN sticks with BCR-ABL to add chemical ‘tags’ that protect the abnormal protein against degradation, therefore increasing its overall levels. Finally, the team showed that SRC, an enzyme often dysregulated in emerging cancers, can activate RAPSYN’s ability to conduct neddylation; such mechanism could promote BCR-ABL stabilization and, in turn, disease progression. Taken together, these experiments indicate a new way by which BCR-ABL levels are controlled. Future studies should investigate whether RAPSYN also stabilizes BCR-ABL in patients whose leukemias have become resistant to existing drugs. Eventually, RAPSYN may offer a new target for overcoming drug-resistance in CML patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在这项研究中,大黄鱼(Larimichthyscrocea)使用多频超声辅助冷冻(MUIF)以不同的功率(160W,175W,190瓦,分别)并在-18°C下储存10个月。研究了不同超声功率对大黄鱼肌原纤维蛋白(MP)结构和脂质氧化的影响。结果表明,MUIF通过抑制羰基形成和保持高巯基含量,显著减缓了MP的氧化。这些处理还在MP中保持了Ca2-ATPase的高活性。MUIF在冷冻储存过程中保持了较高的α-螺旋与β-折叠的比例,从而保护组织的二级结构并稳定三级结构。此外,MUIF抑制了硫代巴比妥酸活性物质的产生值和不饱和脂肪酸含量的损失,表明MUIF能更好地抑制大黄鱼在长期冷冻贮藏过程中的脂质氧化。
    In this study, large yellow croaker (Larimichthys crocea) was frozen using multi-frequency ultrasound-assisted freezing (MUIF) with different powers (160 W, 175 W, and 190 W, respectively) and stored at -18 °C for ten months. The effect of different ultrasound powers on the myofibrillar protein (MP) structures and lipid oxidation of large yellow croaker was investigated. The results showed that MUIF significantly slowed down the oxidation of MP by inhibiting carbonyl formation and maintaining high sulfhydryl contents. These treatments also held a high activity of Ca2+-ATPase in the MP. MUIF maintained a higher ratio of α-helix to β-sheet during frozen storage, thereby protecting the secondary structure of the tissue and stabilizing the tertiary structure. In addition, MUIF inhibited the production of thiobarbituric acid reactive substances value and the loss of unsaturated fatty acid content, indicating that MUIF could better inhibit lipid oxidation of large yellow croaker during long-time frozen storage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肌原纤维蛋白(MPs)对基于凝胶的产品的硬度和柔韧性有显著的影响。因此,提高扇贝MP的凝胶化和乳化性能对于生产优质扇贝鱼糜产品具有至关重要的意义。在这项研究中,我们研究了高强度超声对海湾扇贝(Argopectenirrhans)MP的物理化学和凝胶化特性的影响。随着超声功率(150、350和550W)的增加,MPs的羰基含量显着增加,表明超声诱导的MP氧化。同时,高强度超声处理(550W)增强了MPs的乳化能力和短期稳定性(高达72.05m2/g和153.05min,分别)。随着超声波功率的增加,MPs的二硫键含量和表面疏水性显着增加,表明MP的构象变化。此外,在议员的二级结构中,α-螺旋含量显著下降,而β-折叠含量增加,从而表明超声诱导的MP分子的拉伸和柔性。十二烷基硫酸钠-聚丙烯酰胺凝胶电泳和扫描电子显微镜分析进一步阐明了高强度超声诱导MP氧化,导致氨基酸侧链的修饰,分子内和分子间交联,和MP聚合。因此,发现高强度超声治疗可以增强粘弹性,凝胶强度,和MP凝胶的保水能力,因为超声处理促进了蛋白质凝胶中稳定网络结构的形成。因此,这项研究为海湾扇贝MPs的功能修饰及其鱼糜产品的加工提供了理论见解。
    Myofibrillar proteins (MPs) have a notable impact on the firmness and flexibility of gel-based products. Therefore, enhancing the gelation and emulsification properties of scallop MPs is of paramount significance for producing high-quality scallop surimi products. In this study, we investigated the effects of high-intensity ultrasound on the physicochemical and gelation properties of MPs from bay scallops (Argopecten irradians). The carbonyl content of MPs significantly increased with an increase in ultrasound power (150, 350, and 550 W), indicating ultrasound-induced MP oxidation. Meanwhile, high-intensity ultrasound treatment (550 W) enhanced the emulsifying capacity and the short-term stability of MPs (up to 72.05 m2/g and 153.05 min, respectively). As the ultrasound power increased, the disulfide bond content and surface hydrophobicity of MPs exhibited a notable increase, indicating conformational changes in MPs. Moreover, in the secondary structure of MPs, the α-helix content significantly decreased, whereas the β-sheet content increased, thereby suggesting the ultrasound-induced stretching and flexibility of MP molecules. Sodium-dodecyl sulfate-polyacrylamide gel electrophoresis and scanning electron microscopy analysis further elucidated that high-intensity ultrasound induced MP oxidation, leading to modification of amino acid side chains, intra- and intermolecular cross-linking, and MP aggregation. Consequently, high-intensity ultrasound treatment was found to augment the viscoelasticity, gel strength, and water-holding capacity of MP gels, because ultrasound treatment facilitated the formation of a stable network structure in protein gels. Thus, this study offers theoretical insights into the functional modification of bay scallop MPs and the processing of its surimi products.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号