Microtiter plates

  • 文章类型: Journal Article
    酶在催化生物反应和维持代谢系统中具有重要作用。许多体外酶生物测定法已经被开发用于工业和研究领域,比如细胞生物学,酶工程,药物筛选,和生物燃料生产。值得注意的是,其中许多需要使用高通量平台。尽管微量滴定板仍然是高通量酶促生物测定的标准,微流体阵列和液滴微流体代表新兴的方法。每个人都取得了重大进展,并提供了独特的优势;然而,关键性能指标的缺点,包括试剂消耗,反应操纵,反应恢复,实时测量,浓度梯度范围,和多重性,remain.在这里,我们使用上述指标作为标准比较了最近的高通量平台,并提供了对剩余挑战和未来研究趋势的见解。
    Enzymes have essential roles in catalyzing biological reactions and maintaining metabolic systems. Many in vitro enzymatic bioassays have been developed for use in industrial and research fields, such as cell biology, enzyme engineering, drug screening, and biofuel production. Of note, many of these require the use of high-throughput platforms. Although the microtiter plate remains the standard for high-throughput enzymatic bioassays, microfluidic arrays and droplet microfluidics represent emerging methods. Each has seen significant advances and offers distinct advantages; however, drawbacks in key performance metrics, including reagent consumption, reaction manipulation, reaction recovery, real-time measurement, concentration gradient range, and multiplexity, remain. Herein, we compare recent high-throughput platforms using the aforementioned metrics as criteria and provide insights into remaining challenges and future research trends.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细菌性阴道病(BV)涉及粘附于阴道上皮细胞的多物种生物膜的存在,但是由于细菌群落的复杂性,其深入研究受到限制,这使得体外模型的设计具有挑战性。也许最常见的量化生物膜的实验技术是结晶紫(CV)染色方法。尽管它被广泛使用,CV方法并非没有缺陷。虽然在不同条件下同一菌株内的生物膜CV定量通常被接受,通过CV染色评估多物种生物膜的形成可能提供显著的偏差。对于BV研究,确定物种之间可能的协同作用或拮抗作用是评估单个物种在BV发育中的作用的基本步骤。在这里,我们提供了关于CV如何无法正确量化由阴道加德纳菌组成的体外三重物种生物膜的观点,范尼海(Atobobium)阴道,和比维亚普雷沃氏菌,三种常见的BV相关细菌被认为在BV发病机制中起关键作用。我们将CV方法与总菌落形成单位(CFU)和荧光显微镜细胞计数方法进行了比较。毫不奇怪,当比较单物种生物膜时,生物膜生物量之间的关系,细胞总数,每种测试方法之间的总可培养细胞非常不同,也随着孵化时间的变化而变化。因此,尽管它广泛用于单物种生物膜定量,在BV发病机制研究中,不应考虑CV方法来准确定量多物种生物膜。
    Bacterial Vaginosis (BV) involves the presence of a multi-species biofilm adhered to vaginal epithelial cells, but its in-depth study has been limited due to the complexity of the bacterial community, which makes the design of in vitro models challenging. Perhaps the most common experimental technique to quantify biofilms is the crystal violet (CV) staining method. Despite its widespread utilization, the CV method is not without flaws. While biofilm CV quantification within the same strain in different conditions is normally accepted, assessing multi-species biofilms formation by CV staining might provide significant bias. For BV research, determining possible synergism or antagonism between species is a fundamental step for assessing the roles of individual species in BV development. Herein, we provide our perspective on how CV fails to properly quantify an in vitro triple-species biofilm composed of Gardnerella vaginalis, Fannyhessea (Atopobium) vaginae, and Prevotella bivia, three common BV-associated bacteria thought to play key roles in incident BV pathogenesis. We compared the CV method with total colony forming units (CFU) and fluorescence microscopy cell count methods. Not surprisingly, when comparing single-species biofilms, the relationship between biofilm biomass, total number of cells, and total cultivable cells was very different between each tested method, and also varied with the time of incubation. Thus, despite its wide utilization for single-species biofilm quantification, the CV method should not be considered for accurate quantification of multi-species biofilms in BV pathogenesis research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Hepatitis B virus (HBV) is a para-retrovirus that reverse transcribes its pregenomic RNA into relaxed circular DNA inside viral nucleocapsids. The number of HBV genomes produced in vitro is typically quantified using commercial silica-membrane-based nucleic acid purification kits to isolate total DNA followed by HBV-specific quantitative PCR (qPCR). However, despite the convenience of commercial kits, this procedure is costly and time-consuming due to multiple centrifugation steps, which produce unnecessary waste. Here, we report a rapid, cost-effective, and environmentally friendly total DNA preparation method. The assay is based on the simple incubation of detergent and proteinase K with cells or cell-free supernatants to permeabilize cells and disrupt viral particles. After heat inactivation and subsequent centrifugation to clear the lysates, DNA samples are directly subjected to qPCR to quantify HBV genomes. As a proof of concept, the assay was developed in 12-well plates to assess intra- and extracellular HBV genome equivalents (GEqs) of stably viral-replicating cell lines (e.g., HepAD38) and HBV-infected HepG2-NTCP cells, both treated with lamivudine (LMV), an HBV replication inhibitor. Viral DNA was also prepared from the serum of patients chronically infected with HBV. To validate the assay, a representative commercial DNA isolation kit was used side-by-side to isolate intra- and extracellular HBV DNA. Both methods yielded comparable amounts of HBV GEqs with comparable LMV 50% efficient concentration (EC50) values. The assay was subsequently adapted to 96- and 384-well microtiter plates using HepAD38 cells. The EC50 values were comparable to those obtained in 12-well plates. In addition, the calculated coefficient of variation, Z\' values, and assay window demonstrated high reproducibility and quality. We devised a novel, robust, reproducible, high-throughput microtiter plate DNA preparation method suitable for quantifying HBV GEqs by qPCR analysis. This strategy enables rapid and convenient quantitative analysis of multiple viral DNA samples in parallel to investigate intracellular HBV replication and the secretion of DNA-containing viral particles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Methicillin-resistant Staphylococcus aureus (MRSA) biofilm producers represent an important etiological agent of many chronic human infections. Antibiotics and host immune responses are largely ineffective against bacteria within biofilms. Alternative actions and novel antimicrobials should be considered. In this context, the use of phages to destroy MRSA biofilms presents an innovative alternative mechanism.
    Twenty-five MRSA biofilm producers were used as substrates to isolate MRSA-specific phages. Despite the difficulties in obtaining an isolate of this phage, two phages (UPMK_1 and UPMK_2) were isolated. Both phages varied in their ability to produce halos around their plaques, host infectivity, one-step growth curves, and electron microscopy features. Furthermore, both phages demonstrated antagonistic infectivity on planktonic cultures. This was validated in an in vitro static biofilm assay (in microtiter-plates), followed by the visualization of the biofilm architecture in situ via confocal laser scanning microscopy before and after phage infection, and further supported by phages genome analysis. The UPMK_1 genome comprised 152,788 bp coding for 155 putative open reading frames (ORFs), and its genome characteristics were between the Myoviridae and Siphoviridae family, though the morphological features confined it more to the Siphoviridae family. The UPMK_2 has 40,955 bp with 62 putative ORFs; morphologically, it presented the features of the Podoviridae though its genome did not show similarity with any of the S. aureus in the Podoviridae family. Both phages possess lytic enzymes that were associated with a high ability to degrade biofilms as shown in the microtiter plate and CLSM analyses.
    The present work addressed the possibility of using phages as potential biocontrol agents for biofilm-producing MRSA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    OBJECTIVE: To develop an efficient cost-effective screening process to improve production of glucoamylase in Aspergillus niger.
    RESULTS: The cultivation of A. niger was achieved with well-dispersed morphology in 48-deep-well microtiter plates, which increased the throughput of the samples compared to traditional flask cultivation. There was a close negative correlation between glucoamylase and its pH of the fermentation broth. A novel high-throughput analysis method using Methyl Orange was developed. When compared to the conventional analysis method using 4-nitrophenyl α-D-glucopyranoside as substrate, a correlation coefficient of 0.96 by statistical analysis was obtained.
    CONCLUSIONS: Using this novel screening method, we acquired a strain with an activity of 2.2 × 103 U ml-1, a 70% higher yield of glucoamylase than its parent strain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    This study reports the applicability of a capacitance-based technique for evaluating the biofilm progression of Sphingomonas sp. One hundred and forty isolates of Sphingomonas were screened from public drinking water sites, and one potential strain with biofilm-forming ability was used for the study. The biofilm production by this strain was established in microtiter plates and aluminum coupons. The standard biofilm-forming strain Sphingomonas terrae MTCC 7766 was used for comparison. Changes in biofilm were analyzed by energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscope (SEM). Capacitance values were measured at 1, 100 and 200 kHz frequency; however, 1 kHz was selected since resulted in reproducible values, which could be correlated to biofilm age measured as dry weight over a time of 96 h (4 days) depicting the biofilm growth/progression over time. The EDX, SEM and capacitance values obtained in parallel indicated the related physiological profile usually displayed by biofilms upon growth, suggesting authenticity to the observed capacitance profile. The results of this study demonstrated the feasibility of a capacitance-based method for analyzing biofilm development/progression by Sphingomonas sp. and suggested a simple approach for developing an online system to detect biofilms by this opportunistic pathogen of concern in drinking water.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    背景:小规模的常规实验通常以“黑匣子”的方式进行,仅分析最终样品中的产品浓度。在线监测相关工艺特性和参数,如基板限制,产品抑制和氧气供应不足。因此,迄今为止,对于新的微生物系统的详细研究,需要配备齐全的实验室规模的搅拌罐生物反应器。然而,它们太宽敞了,大量并行操作既费力又昂贵。因此,这项研究的目的是提出一种新的实验方法,通过并行使用两个具有在线监测功能的小规模培养系统来获得密集的定量过程信息:呼吸活性监测系统(RAMOS)和BioLector设备。
    结果:将相同的“主混合物”(培养基加微生物)分配到不同的小规模培养系统:1)RAMOS装置;2)用于BioLector装置的48孔微量滴定板;和3)单独的摇瓶或微量滴定板用于离线取样。通过调整相同的最大氧转移能力(OTRmax),RAMOS和BioLector在线监测系统的结果对所有研究的微生物系统都很好地相互补充(E.大肠杆菌G.氧化丹,K.乳酸)和培养条件(氧限制,双氢生长,自动感应,缓冲效果)。
    结论:RAMOS和BioLector设备的并行使用是获得有关被评估微生物的生长和生产行为的全面定量数据的合适且快速的方法。这些获得的数据大大减少了实验室规模的搅拌釜生物反应器中用于基本工艺开发的必要实验数量。因此,在更短的时间内并行获得更多的定量信息。
    BACKGROUND: Conventional experiments in small scale are often performed in a \'Black Box\' fashion, analyzing only the product concentration in the final sample. Online monitoring of relevant process characteristics and parameters such as substrate limitation, product inhibition and oxygen supply is lacking. Therefore, fully equipped laboratory-scale stirred tank bioreactors are hitherto required for detailed studies of new microbial systems. However, they are too spacious, laborious and expensive to be operated in larger number in parallel. Thus, the aim of this study is to present a new experimental approach to obtain dense quantitative process information by parallel use of two small-scale culture systems with online monitoring capabilities: Respiration Activity MOnitoring System (RAMOS) and the BioLector device.
    RESULTS: The same \'mastermix\' (medium plus microorganisms) was distributed to the different small-scale culture systems: 1) RAMOS device; 2) 48-well microtiter plate for BioLector device; and 3) separate shake flasks or microtiter plates for offline sampling. By adjusting the same maximum oxygen transfer capacity (OTRmax), the results from the RAMOS and BioLector online monitoring systems supplemented each other very well for all studied microbial systems (E. coli, G. oxydans, K. lactis) and culture conditions (oxygen limitation, diauxic growth, auto-induction, buffer effects).
    CONCLUSIONS: The parallel use of RAMOS and BioLector devices is a suitable and fast approach to gain comprehensive quantitative data about growth and production behavior of the evaluated microorganisms. These acquired data largely reduce the necessary number of experiments in laboratory-scale stirred tank bioreactors for basic process development. Thus, much more quantitative information is obtained in parallel in shorter time.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    A new automated pharmacoanalytical technique for convenient quantification of redox-active antibiotics has been established by combining the benefits of a carbon nanotube (CNT) sensor modification with electrocatalytic activity for analyte detection with the merits of a robotic electrochemical device that is capable of sequential nonmanual sample measurements in 24-well microtiter plates. Norfloxacin (NFX) and ciprofloxacin (CFX), two standard fluoroquinolone antibiotics, were used in automated calibration measurements by differential pulse voltammetry (DPV) and accomplished were linear ranges of 1-10 μM and 2-100 μM for NFX and CFX, respectively. The lowest detectable levels were estimated to be 0.3±0.1 μM (n=7) for NFX and 1.6±0.1 μM (n=7) for CFX. In standard solutions or tablet samples of known content, both analytes could be quantified with the robotic DPV microtiter plate assay, with recoveries within ±4% of 100%. And recoveries were as good when NFX was evaluated in human serum samples with added NFX. The use of simple instrumentation, convenience in execution, and high effectiveness in analyte quantitation suggest the merger between automated microtiter plate voltammetry and CNT-supported electrochemical drug detection as a novel methodology for antibiotic testing in pharmaceutical and clinical research and quality control laboratories.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Generation of monoclonal antibody (mAb) libraries against antigens in complex matrices can prove a valuable analytical tool. However, delineating the specificity of newly generated antibodies is the limiting step of the procedure. Here, we propose a strategy for mAb production by injecting mice with complex biological fluid and mAb characterization by coupling immunoaffinity techniques with Mass spectrometry (immuno-MS). Mice were immunized against fractionated seminal plasma and mAbs were produced. Different immuno-MS protocols based on four types of solid support (i.e. polystyrene microtiter plates, NHS-activated agarose beads, tosyl-activated magnetic beads and MSIA™ pipette tips) were established. A well-characterized mouse monoclonal anti-KLK3 (PSA) Ab was used as a model to evaluate each protocol\'s robustness and reproducibility and to establish a set of criteria which would allow antigen characterization of newly developed Abs. Three of the newly generated Abs were analyzed using our optimized protocols. Analysis revealed that all assay configurations used were capable of antibody characterization. Furthermore, low-abundance antigens (e.g. ribonuclease T2) could be identified as efficiently as the high-abundance ones. Our data suggest that complex biological samples can be used for the production of mAbs, which will facilitate the analysis of their proteome, while the established immuno-MS protocols can offer efficient mAb characterization.
    UNASSIGNED: The inoculation of animals with complex biological samples is aiming at the discovery of novel disease biomarkers, present in the biological specimens, as well as the production of rare reagents that will facilitate the ultra-sensitive analysis of the biomolecules\' native form. In the present study, we initially propose a general workflow concerning the handling of biological samples, as well as the monoclonal antibody production. Furthermore, we established protocols for the reliable and reproducible identification of antibody specificity using various immuno-affinity purification techniques coupled to mass spectrometry. Our data suggest that processed biological fluids can be used for the production of mAbs targeting proteins of varying abundance, and that various immuno-MS protocols can offer great capabilities for the mAb characterization procedure.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号