Microfibre

超细纤维
  • 文章类型: Journal Article
    离心纺丝(CS)方法可以解决常见的问题,例如低生产率和高能耗的非织造纺织品制造行业。类似于棉花糖生产,高速旋转的储存器从孔口挤出熔体或溶剂基聚合物以生产纤维。使用聚合物熔体避免溶剂消除和毒性,但是这个过程更加困难。因此,开发了一种多功能的实验室规模的热熔喷丝头,能够连续倒入颗粒内部,以扩大我们对CS方法的了解,并研究不同的挤出几何形状,例如无喷嘴。在可控参数中,喷丝头加热温度(高达300°C),它的两个可互换的3D打印机喷嘴。Arduino代码用于稳定温度。用聚丙烯和聚乳酸研究了系统性能。结果表明,产生了直径小于15μm的纤维。这项工作在CCBY-NC4.0下获得许可。要查看此许可证的副本,visithttp://creativecommons.org/licenses/by-nc/4.0/。
    The centrifugal spinning (CS) method could address common issues such as low production rate and high energy consumption in the industry of nonwoven textile fabrication. Similarly to cotton candy production, the high-speed rotating reservoir extrudes melt or solvent-based polymer from orifices to produce fibres. Using polymer melt avoids solvent elimination and toxicity, but the process is more difficult. Thus, a versatile lab-scale hot melt spinneret with the ability to pour pellets inside continuously to expand our knowledge of the CS method and investigating different extrusion geometries such as nozzlefree is developed. Among the controllable parameters are, the spinneret heating temperature (up to 300°C), its two interchangeable 3D printer nozzles. An Arduino code is used to stabilize the temperature. The system performance is investigated with polypropylene and polylactide. The results show that fibres under 15 μm in diameter are produced. This work is licensed under CC BY-NC 4.0. To view a copy of this license, visithttp://creativecommons.org/licenses/by-nc/4.0/.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Microplastic pollution of freshwaters is known to be a great concern in China and these pollutants can be discharged into the coastal environment through fluvial processes, posing threats to the global marine ecosystem. This paper reviewed the literature measuring microplastic pollution in the Chinese freshwater environment and found that microfibres dominate other plastic morphologies in more than 65% of samples collected in surface water, sediments and effluents of wastewater treatment plants and domestic sewers. Current potential sources of microfibre pollution are identified including fishery activities, laundry sewage, and waste textiles according to previous research. Recommendations are offered using the circular economy management framework, such as textile waste reuse and recycling systems in China, for improving current control measures for microplastics in freshwaters.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Microplastics have been considered as contaminants of emerging concern due to ubiquity in the environment; however, the occurrence of microplastics in river estuaries is scarcely investigated. The Klang River estuary is an important ecosystem that receives various contaminants from urbanised, highly populated areas and the busiest maritime centre in Selangor, Malaysia. This study investigates the abundance and characteristics of microplastics in surface water of the Klang River estuary. The abundance of microplastics ranged from 0.5 to 4.5 particles L-1 with a mean abundance of 2.47 particles L-1. There is no correlation between the abundance of microplastics and physicochemical properties, while there is a strong correlation between salinity and conductivity. The microplastics were characterised with a stereomicroscope and attenuated total reflection-Fourier transform infrared spectroscopy to analyse size, shape, colour, and polymer composition. The microplastics in the surface water were predominantly in the 300-1000 μm size class, followed by > 1000 μm and < 300 μm, and were mostly transparent fibres, fragments, and pellets. Polyamide and polyethylene were the main polymer types in the composition of the microplastics, suggesting that the microplastics originated from heavily urbanised and industrial locations such as the port, jetty, and residential areas. The widespread occurrence of microplastics in the environment and subsequent penetration of aquatic food webs may pose a serious threat to organisms. This study provides baseline data and a framework for further investigation of microplastic contamination in estuaries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The use of microfibre cloths with either water, detergent or disinfectant is currently recommended for hospital cleaning. This study explored the efficacy of a microfibre cloth with either water or detergent/disinfectant or sporicidal products using the ASTM2967-15 standard against Staphylococcus aureus, Acinetobacter baumannii and Clostridium difficile spores. The use of detergent/disinfectant or sporicidal products had a significantly (analysis of variance (ANOVA), P<0.001) better activity than water alone in reducing bacteria and spores\' viability, and in reducing the transfer microorganisms between surfaces. The use of water alone with a microfibre cloth is less effective and should not replace the use of biocidal products.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    While there is now an established recognition of microplastic pollution in the oceans, and the detrimental effects this may have on marine animals, the ocean depth at which such contamination is ingested by organisms has still not been established. Here, we detect the presence of ingested microplastics in the hindguts of Lysianassoidea amphipod populations, in six deep ocean trenches from around the Pacific Rim (Japan, Izu-Bonin, Mariana, Kermadec, New Hebrides and the Peru-Chile trenches), at depths ranging from 7000 m to 10 890 m. This illustrates that microplastic contaminants occur in the very deepest reaches of the oceans. Over 72% of individuals examined (65 of 90) contained at least one microparticle. The number of microparticles ingested per individual across all trenches ranged from 1 to 8. The mean and standard error of microparticles varied per trench, from 0.9 ± 0.4 (New Hebrides Trench) to 3.3 ± 0.7 (Mariana Trench). A subsample of microfibres and fragments analysed using FTIR were found to be a collection of plastic and synthetic materials (Nylon, polyethylene, polyamide, polyvinyl alcohol, polyvinylchloride, often with inorganic filler material), semi-synthetic (rayon and lyocell) and natural fibre (ramie). Notwithstanding, this study reports the deepest record of microplastic ingestion, indicating that anthropogenic debris is bioavailable to organisms at some of the deepest locations in the Earth\'s oceans.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The microfibre content of beach sediment samples was established at 175 sampling sites along over 2700 km of South Africa\'s coastline in 2016 and again in 2017. The average microfibre content was 80 ± 102 F/dm3 in Feb/March 2017 (n = 161), and 87 ± 84 F/dm3 in May/June 2016 (n = 128). These average values, and the observed ranges of 0 to 797 F/dm3 in 2017 and 4 to 772 F/dm3 in 2016, are consistent with global observations. The highest microfibre levels were observed at sampling sites close to large coastal waste water treatment work discharge points. Several instances of temporal variability are observed, only some of which can be associated with seasonal changes in river runoff. This baseline data set is a valuable reference point for identification of priority study sites for more detailed study of marine ecosystem response to microfibre pollution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Contamination by microplastic particles and fibres has been observed in sediment and animals sampled from the Firth of Clyde, West Scotland. In addition to microplastics released during clothes washing, a probable source is polymer ropes in abandoned, lost and discarded fishing and recreational sailing gear. The fragmentation of polypropylene, polyethylene, and nylon exposed to benthic conditions at 10m depth over 12months was monitored using changes in weight and tensile properties. Water temperature and light levels were continuously monitored. The degree of biofouling was measured using chlorophyll a, the weight of attached macroalgae, and colonising fauna. Results indicate microplastic fibres and particles may be formed in benthic environments despite reduced photodegradation. Polypropylene, Nylon, and polyethylene lost an average of 0.39%, 1.02%, and 0.45% of their mass per month respectively. Microscope images of the rope surface revealed notable surface roughening believed to be caused by abrasion by substrate and the action of fouling organisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Monitoring the ingestion of microplastics is challenging and suitable detection techniques are insufficiently used. Thus, misidentifying natural for synthetic microfibres cannot be avoided. As part of a framework to monitor the ingestion of microplastics in eelpout, this short report addresses the accurate identification of microfibres. We show that, following visual inspections, putatively synthetic microfibres are indeed of natural origin, as ascertained by spectrometric analyses. Consequently, we call for an inclusion of spectroscopic techniques in standardized microplastic monitoring schemes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    There is growing evidence of extensive pollution of the environment by microplastic, with microfibres representing a large proportion of the microplastics seen in marine sediments. Since microfibres are ubiquitous in the environment, present in the laboratory air and water, evaluating microplastic pollution is difficult. Incidental contamination is highly likely unless strict control measures are employed. Here we describe methods developed to minimize the amount of incidental post-sampling contamination when quantifying marine microfibre pollution. We show that our protocol, adapted from the field of forensic fibre examination, reduces fibre abundance by 90% and enables the quick screening of fibre populations. These methods therefore allow an accurate estimate of microplastics polluting marine sediments. In a case study from a series of samples collected on a research vessel, we use these methods to highlight the prevalence of microfibres as marine microplastics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Evaluation Study
    While electrospinning is an effective technology for producing poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) micrometre-scale fibrous scaffolds for tissue regeneration, electrospinning of PHBV fibrous scaffolds composed of sub-micrometre fibres, surface-porous fibres or nanocomposite fibres is rarely explored. In this study, the average PHBV fibre diameter was successfully reduced to the sub-micrometre scale by dissolving a conductivity-enhancing salt in the polymer solution for electrospinning. Surface-porous fibres were made using a mixture of solvents, and carbonated hydroxyapatite (CHA) nanoparticles were incorporated into the fibres with the aid of an ultrasonic power source. Water contact angle measurements demonstrated that both fibre diameter reduction and CHA incorporation enhanced the wettability of the fibrous scaffolds. Tensile properties of the scaffolds were not undermined by the reduction of fibre diameter and the presence of surface pores. In vitro biological evaluation using a human osteoblast-like cell line (SaOS-2) demonstrated that all types of fibrous scaffolds supported cell attachment, spreading and proliferation. Analysis of cell morphology revealed similar projected cell areas on all types of scaffolds. However, cells on sub-micrometre fibres possessed a lower cell aspect ratio than cells on microfibres. The reduction of fibre diameter to the sub-micrometre scale enhanced cell proliferation after 14 days cell culture, while the incorporation of CHA nanoparticles in microfibres significantly enhanced the alkaline phosphatase activity of SaOS-2 cells. The control of fibre diameter, surface topography and composition is important in developing electrospun PHBV-based scaffolds for specific tissue-engineering applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号