HEY2

Hey2
  • 文章类型: Journal Article
    A basic helix-loop-helix transcription factor Hey2 is expressed in the ventricular myocardium and endocardium of mouse embryos, and Hey2 null mice die perinatally showing ventricular septal defect, dysplastic tricuspid valve and hypoplastic right ventricle. In order to understand region-specific roles of Hey2 during cardiac morphogenesis, we generated Hey2 conditional knockout (cKO) mice using Mef2c-AHF-Cre, which was active in the anterior part of the second heart field and the right ventricle and outflow tract of the heart. Hey2 cKO neonates reproduced three anomalies commonly observed in Hey2 null mice. An earliest morphological defect was the lack of right ventricular extension along the apico-basal axis at midgestational stages. Underdevelopment of the right ventricle was present in all cKO neonates including those without apparent atresia of right-sided atrioventricular connection. RNA sequencing analysis of cKO embryos identified that the gene expression of a non-chamber T-box factor Tbx2 was ectopically induced in the chamber myocardium of the right ventricle. Consistently, mRNA expression of the Mycn transcription factor, which was a cell cycle regulator transcriptionally repressed by Tbx2, was down regulated, and the number of S-phase cells was significantly decreased in the right ventricle of cKO heart. These results suggest that Hey2 plays an important role in right ventricle development during cardiac morphogenesis, at least in part, through mitigating Tbx2-dependent inhibition of Mycn expression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Previous works characterized a novel cell population from adult human peripheral blood, designated peripheral blood insulin-producing cells (PB-IPC). PB-IPC displayed the pluripotent potential of differentiations after the treatment with platelet-derived mitochondria and gave rise to three germ layer-derived cells such as the mitochondrion-induced CD34+ hematopoietic stem cells (HSC)-like cells (miCD34+ HSC). To determine the molecular mechanism underlying the differentiation of miCD34+ cells, mechanistic studies established that MitoTracker Deep Red-labeled mitochondria could enter into the PB-IPC in a dose-dependent manner. Blocking Notch signaling pathway with a γ-secretase inhibitor, DAPT, markedly inhibited the proliferation of PB-IPC and improved the differentiation of miCD34+ HSC. Additionally, treatment with platelet-derived mitochondria can reprogram the differentiation of PB-IPC into miCD34+ HSC through inhibition of the Notch/HEY2 signaling pathway, as demonstrated by blocking experiments with HEY2 small interfering RNA (siRNA). The data indicated that Notch signaling pathway contributes to the miCD34+ HSC differentiation, thus advancing our understanding of the mitochondrial reprogramming and the potential treatment of human hematopoietic disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    硬骨鱼斑马鱼和新生哺乳动物的心脏表现出通过预先存在的心肌细胞(CM)的去分化和增殖而再生的显着能力。尽管已经发现了许多刺激斑马鱼心脏再生的有丝分裂信号,抑制损伤诱导的CM更新的转录程序尚未完全了解。这里,我们报道了gridlock(grl;也称为hey2)中的突变,编码毛状相关的碱性螺旋-环-螺旋转录抑制因子,增强CM增殖并减少损伤后的纤维化。相比之下,心肌grl诱导减弱CM去分化和心脏损伤的再生反应。RNA测序分析揭示Smyd2赖氨酸甲基转移酶(KMT)是Grl抑制的关键转录靶标。损伤引发的Grl蛋白水平的降低诱导了伤口心肌的smyd2表达,增强CM增殖。我们证明Smyd2作为甲基转移酶起作用,并调节Stat3甲基化和磷酸化活性。抑制Smyd2的KMT活性可减少心脏伤口的磷酸化Stat3,抑制受损grl突变心脏中CM增殖的升高。我们的发现建立了一个损伤特异性转录抑制程序,在心脏再生过程中控制CM更新,提供一种潜在的策略,使局部区域的Grl抑制沉默可能会增强受损哺乳动物心脏的再生能力。
    Teleost zebrafish and neonatal mammalian hearts exhibit the remarkable capacity to regenerate through dedifferentiation and proliferation of pre-existing cardiomyocytes (CMs). Although many mitogenic signals that stimulate zebrafish heart regeneration have been identified, transcriptional programs that restrain injury-induced CM renewal are incompletely understood. Here, we report that mutations in gridlock (grl; also known as hey2), encoding a Hairy-related basic helix-loop-helix transcriptional repressor, enhance CM proliferation and reduce fibrosis following damage. In contrast, myocardial grl induction blunts CM dedifferentiation and regenerative responses to heart injury. RNA sequencing analyses uncover Smyd2 lysine methyltransferase (KMT) as a key transcriptional target repressed by Grl. Reduction in Grl protein levels triggered by injury induces smyd2 expression at the wound myocardium, enhancing CM proliferation. We show that Smyd2 functions as a methyltransferase and modulates the Stat3 methylation and phosphorylation activity. Inhibition of the KMT activity of Smyd2 reduces phosphorylated Stat3 at cardiac wounds, suppressing the elevated CM proliferation in injured grl mutant hearts. Our findings establish an injury-specific transcriptional repression program in governing CM renewal during heart regeneration, providing a potential strategy whereby silencing Grl repression at local regions might empower regeneration capacity to the injured mammalian heart.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    In this study we aimed to establish the genetic cause of a myriad of cardiovascular defects prevalent in individuals from a genetically isolated population, who were found to share a common ancestor in 1728.
    Trio genome sequencing was carried out in an index patient with critical congenital heart disease (CHD); family members had either exome or Sanger sequencing. To confirm enrichment, we performed a gene-based association test and meta-analysis in two independent validation cohorts: one with 2685 CHD cases versus 4370 . These controls were also ancestry-matched (same as FTAA controls), and the other with 326 cases with familial thoracic aortic aneurysms (FTAA) and dissections versus 570 ancestry-matched controls. Functional consequences of identified variants were evaluated using expression studies.
    We identified a loss-of-function variant in the Notch target transcription factor-encoding gene HEY2. The homozygous state (n = 3) causes life-threatening congenital heart defects, while 80% of heterozygous carriers (n = 20) had cardiovascular defects, mainly CHD and FTAA of the ascending aorta. We confirm enrichment of rare risk variants in HEY2 functional domains after meta-analysis (MetaSKAT p = 0.018). Furthermore, we show that several identified variants lead to dysregulation of repression by HEY2.
    A homozygous germline loss-of-function variant in HEY2 leads to critical CHD. The majority of heterozygotes show a myriad of cardiovascular defects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Comparative Study
    Development of multi-chambered heart is associated with spatio-temporal regulation of gene expression. A basic helix-loop-helix transcription factor Hey2 is specifically expressed in the embryonic mouse ventricles and is indispensable for ventricular myocyte differentiation, compartment identity and morphogenesis of the heart. However, how Hey2 transcription is precisely regulated in the heart remains unclear. In this study, we identified a distal Hey2 enhancer conserved in the mouse and human to possess specific transcriptional activity in ventricular free wall myocytes at the looping stage of cardiac development. Deletion of the enhancer significantly decreased endogenous Hey2 expression in the ventricular myocardium but not in other tissues of mouse embryos. Mutation/deletion of the conserved binding sites for T-box and Gata proteins, but not NK-2 proteins, abolished the enhancer activity, and Tbx20 null mice completely lost the enhancer activity in the embryonic ventricles. Luciferase reporter analysis suggested that the ventricular enhancer activity was controlled by Tbx20 through its DNA binding and cooperative function with cardiac Gata proteins. These results delineate a regulatory mechanism of ventricular Hey2 expression and help fully understand molecular cascades in myocardial cell differentiation and cardiac morphogenesis during embryonic development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Although papillary thyroid carcinoma (PTC) has a favorable prognosis after surgical or medical treatment, its survival rate is still very low. Therefore, finding more reliable therapy methods to limit PTC is a necessity. Compelling evidence has implicated the role of microRNAs (miRNAs or miRs) in PTC. This study aims at investigating the possible effect of microRNA-599 (miR-599) on proliferation, apoptosis, and epithelial-mesenchymal transition (EMT) of PTC cells by targeting Hey2 gene. Differentially expressed genes/miRNAs associated with PTC were screened based on microarray analysis. Then, the expression of the candidate gene, as well as, the regulatory miRNA were detected in PTC cells, the related signaling pathway was verified. Afterward, the relationship between the miR and the candidate gene was verified by dual-luciferase reporter gene assay. Subsequently, the effects of overexpressed miR and silenced candidate gene on cell proliferation, cell apoptosis, EMT, migration, and invasion were detected. In PTC tissues and cells, miR-599 was downregulated while Hey2 expressed highly. Hey2 is a target gene of miR-559. In addition, the expression of Bax and E-cadherin was elevated while that of Hey2, Notch1, Delta-like1, Hes1, N1ICD, Jagged1, Snail, Slug, N-cadherin and Vimentin, and Bcl-2 was reduced in cells treated with upregulated miR-599 or downregulated Hey2. Moreover, miR-599 overexpression or Hey2 silencing inhibited cell proliferation, migration, invasion, along with EMT but promoted apoptosis. This study verified that miR-599 promotes apoptosis and represses proliferation, EMT of PTC cells through inactivating the Notch signaling pathway by downregulating Hey2, which has great clinical significance for PTC treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • DOI:
    文章类型: Journal Article
    The HEY2 (hairy and enhancer of split-related with YRPW motif 2) is reported to play potential roles in tumorigenesis. However, the underlying mechanism in tumorigenesis is remain elusive. The present study aims to investigate the molecular mechanism of biological function of HEY2 in hepatocellular carcinoma (HCC). Dysfunction of the transforming growth factor-beta (TGF-β) pathway plays a critical role in HCC pathogenesis. Here, we identified HEY2 as a suppressor for TGF-β biological response. We demonstrated that HEY2 protein in tumor cytoplasm was up-regulated in HCC. Further, HEY2 overexpression inhibited TGF-β-induced growth arrest of HCC cells and inhibited TGF-β-induced downregulation of c-Myc, both in mRNA and in protein levels. While knockdown of HEY2, by small interfering RNA, was shown to enhance the TGF-β-mediated biological response of HCC cells. Moreover, HEY2 could form complexes with Smad3 and Smad4 and repress Smad3/Smad4 transcriptional activity. In conclusion, our findings indicate a novel role of HEY2 in mediating the TGF-β/Smad signaling pathway in HCC tumorigenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Spatiotemporal gene expression during cardiac development is a highly regulated process. Activation of key signaling pathways involved in electrophysiological programming, such as Notch and Wnt signaling, occurs in early cardiovascular development and these pathways are reactivated during pathologic remodeling. Direct targets of these signaling pathways have also been associated with inherited arrhythmias such as Brugada syndrome and arrhythmogenic cardiomyopathy. In addition, evidence is emerging from animal models that reactivation of Notch and Wnt signaling during cardiac pathology may predispose to acquired arrhythmias, underscoring the importance of elucidating the transcriptional and epigenetic effects on cardiac gene regulation. Here, we highlight specific examples where gene expression dictates electrophysiological properties in both normal and diseased hearts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The direct conversion of accessible cells such as human fibroblasts to inaccessible cells, particularly neurons, opens up many opportunities for using the human model system to study diseases and discover therapies. Previous studies have indicated that the neuronal conversion of adult human skin fibroblasts is much harder than that for human lung fibroblasts, which are used in many experiments. Here we formally report this differential plasticity of human skin versus lung fibroblasts in their transdifferentiation to induced neurons. Using RNAseq of isogenic and non-isogenic pairs of human skin and lung fibroblasts at different days in their conversion to neurons, we found that several master regulators (TWIST1, TWIST2, PRRX1 and PRRX2) in the fibroblast Gene Regulatory Network were significantly downregulated in lung fibroblasts, but not in skin fibroblasts. By knocking down each of these genes and other genes that suppress the neural fate, such as REST, HES1 and HEY2, we found that the combined attenuation of HEY2 and PRRX2 significantly enhanced the transdifferentiation of human skin fibroblasts induced by ASCL1 and p53 shRNA. The new method, which overexpressed ASCL1 and knocked down p53, HEY2 and PRRX2 (ApH2P2), enabled the efficient transdifferentiation of adult human skin fibroblasts to MAP2+ neurons in 14 days. It would be useful for a variety of applications that require the efficient and speedy derivation of patient-specific neurons from skin fibroblasts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Congenital heart defects (CHDs) are the leading cause of death in infants under 1 year of age. Aberrations in the expression and function of cardiac transcription factors (TFs) are a major contributor to CHDs. Despite the numerous studies undertaken to functionally characterize these TFs, their exact role in different stages of cardiogenesis is still not fully elucidated. Here we focused on HEY2, a basic helix loop helix transcriptional repressor, and its potential role in human ventricular septal defects. Genetic analysis was performed based on sequencing of DNA and cDNA obtained from post-operational cardiac tissues and blood of 17 Lebanese patients with various CHDs. The screen covered the entire coding regions of the GATA4, NKX2.5, TBX5, TBX20 and HEY2 genes. Our results revealed two novel somatic mutations, namely p.Ala229Thr and p.161_190 del, affecting HEY2 in the diseased cardiac tissues of two patients with VSD. These results suggest a potential role of HEY2 in regulating ventricular septation in humans.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号