Genetic circuits

遗传回路
  • 文章类型: Journal Article
    群体感应信号已经在细菌群落中进化为群体水平的信号传导,并且是在合成生物学项目中工程化细胞-细胞信号传导的通用工具。这里,我们表征了群体感应信号调色板的空间扩散,发现它们在琼脂中的扩散可以用简单的幂律从它们的分子量来预测。我们还设计了新型的双输入和多输入启动子,这些启动子响应于群体感应扩散信号,用于工程遗传系统。我们设计了一种启动子支架,可以同时通过多个扩散器进行激活和抑制。最后,我们将扩散动力学的知识与新的遗传成分相结合,以构建新一代的空间,具有简化设计的条纹形成系统,提高了鲁棒性,可调谐性,和响应时间。
    Quorum sensing signals have evolved for population-level signaling in bacterial communities and are versatile tools for engineering cell-cell signaling in synthetic biology projects. Here, we characterize the spatial diffusion of a palette of quorum sensing signals and find that their diffusion in agar can be predicted from their molecular weight with a simple power law. We also engineer novel dual- and multi-input promoters that respond to quorum-sensing diffusive signals for use in engineered genetic systems. We engineer a promoter scaffold that can be adapted for activation and repression by multiple diffusers simultaneously. Lastly, we combine the knowledge on diffusion dynamics with the novel genetic components to build a new generation of spatial, stripe-forming systems with a simplified design, improved robustness, tuneability, and response time.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    RNA识别基序(RRM)是自然界中最常见的RNA结合蛋白结构域。然而,含RRM的蛋白质仅在真核生物门中普遍存在,他们在其中发挥着核心监管作用。这里,我们用哺乳动物RNA结合蛋白Musashi-1设计了一个在大肠杆菌中基因表达的正交转录后控制系统,Musashi-1是一种具有神经发育作用的干细胞标记,包含两个规范的RRM。在电路中,Musashi-1在转录上受到调节,并由于与信使RNA的N端编码区的特异性相互作用及其对脂肪酸的结构可塑性而作为变构翻译阻遏物起作用。我们在群体和单细胞水平上充分表征了遗传系统,显示出报告表达的显着倍数变化,以及通过评估一系列RNA突变体的体外结合动力学和体内功能来评估潜在的分子机制。自下而上的数学模型很好地概括了系统的动态响应。此外,我们应用了Musashi-1的转录后机制来特异性调节操纵子内的基因,实施组合调节,并降低蛋白质表达噪声。这项工作说明了基于RRM的调控如何适应简单的生物体,从而在原核生物中增加了一个新的调节层用于翻译控制。
    The RNA recognition motif (RRM) is the most common RNA-binding protein domain identified in nature. However, RRM-containing proteins are only prevalent in eukaryotic phyla, in which they play central regulatory roles. Here, we engineered an orthogonal post-transcriptional control system of gene expression in the bacterium Escherichia coli with the mammalian RNA-binding protein Musashi-1, which is a stem cell marker with neurodevelopmental role that contains two canonical RRMs. In the circuit, Musashi-1 is regulated transcriptionally and works as an allosteric translation repressor thanks to a specific interaction with the N-terminal coding region of a messenger RNA and its structural plasticity to respond to fatty acids. We fully characterized the genetic system at the population and single-cell levels showing a significant fold change in reporter expression, and the underlying molecular mechanism by assessing the in vitro binding kinetics and in vivo functionality of a series of RNA mutants. The dynamic response of the system was well recapitulated by a bottom-up mathematical model. Moreover, we applied the post-transcriptional mechanism engineered with Musashi-1 to specifically regulate a gene within an operon, implement combinatorial regulation, and reduce protein expression noise. This work illustrates how RRM-based regulation can be adapted to simple organisms, thereby adding a new regulatory layer in prokaryotes for translation control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物合成生物学研究需要多种生物技术,以促进植物中新自然生物设备或系统的重新设计和构建。受植物底盘中很少有特征良好的生物艺术品的限制,植物合成生物学的发展落后于微生物。我们在这里构建了一个基于网络的植物合成生物学数据库(PSBD,https://www.bic.AC.cn/PSBD/front/#/)目前正在对1677催化生物制品进行分类,384个监管要素,以及309种和850种化学品信息。在线生物信息学工具,包括本地BLAST,化学相似性,提供了系统发育分析和视觉强度,以帮助合理设计遗传电路,以操纵植物中的基因表达。通过利用PSBD,进行了紫杉二烯合酶2(TcTS2)的功能表征及其在烟草叶片中的定量调控。组装了更强大的合成装置来放大转录信号,允许在植物中增强黄病毒非结构1(NS1)蛋白的表达。PSBD有望成为一个以用户为中心的综合平台,为植物合成生物学研究的各种目的提供一站式服务。
    Plant synthetic biology research requires diverse bioparts that facilitate the redesign and construction of new-to-nature biological devices or systems in plants. Limited by few well-characterized bioparts for plant chassis, the development of plant synthetic biology lags behind that of its microbial counterpart. Here, we constructed a web-based Plant Synthetic BioDatabase (PSBD), which currently categorizes 1677 catalytic bioparts and 384 regulatory elements and provides information on 309 species and 850 chemicals. Online bioinformatics tools including local BLAST, chem similarity, phylogenetic analysis, and visual strength are provided to assist with the rational design of genetic circuits for manipulation of gene expression in planta. We demonstrated the utility of the PSBD by functionally characterizing taxadiene synthase 2 and its quantitative regulation in tobacco leaves. More powerful synthetic devices were then assembled to amplify the transcriptional signals, enabling enhanced expression of flavivirus non-structure 1 proteins in plants. The PSBD is expected to be an integrative and user-centered platform that provides a one-stop service for diverse applications in plant synthetic biology research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    合成生物学领域出现在几十年前,跟随美国研究人员的一些重要工作,欧洲,和远东。它通过学术界到达以色列,几年后它终于得到了工业界的关注,风险投资,和政府当局,尤其是以色列创新局,希望鼓励企业家在这一领域建立创业公司。在这里,我们概述了以色列合成生物学领域的活动,包括历史笔记,当前战略,前景和发展,以及与合成生物学领域任何利益相关者相关的进一步见解。
    The field of synthetic biology emerged a few decades ago, following some key works of researchers in the USA, Europe, and the Far East. It reached Israel through academia and a few years later it finally got the attention of industry, venture capitals, and government authorities, especially the Israeli Innovation Authority, hoping to encourage entrepreneurs to establish startups in this field. Here we provide an overview of the activity of the field of synthetic biology in Israel, including historical notes, current strategy, prospects and developments, and further insight that are relevant to any stakeholders in the synthetic biology field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:在这项研究中,我们设计了一种对Cd2+敏感的新型遗传电路,Zn2+和Pb2+经由过程模仿CadA/CadR操纵子体系介导铜绿假单胞菌的重金属稳态机制。将天然操纵子上的规则DNA基序重新配置,并与增强的绿色荧光蛋白(eGFP)报告基因偶联,以开发新型的基本NOT型逻辑门CadA/CadR-eGFP,以响应上述金属离子。基于基因工程的微生物(GEM)生物传感器(E.coli-BL21:pJET1.2-CadA/CadR-eGFP)是通过将化学合成的CadA/CadR-eGFP基因电路克隆到pJET1.2质粒中并转化为大肠杆菌(E.大肠杆菌)-BL21细菌细胞。
    结果:基于GEM的生物传感器细胞表明在Cd2存在下报告基因表达,Zn2+和Pb2+单独或组合。Further,针对重金属浓度的荧光强度校准的相同生物传感器细胞生成Cd2+的线性图,与非特定金属相比,Zn2和Pb2的R2值分别为0.9809,0.9761和0.9758,Fe3+(0.0373),AsO43-(0.3825)和Ni2(0.8498)使我们的生物传感器适用于检测1-6ppb范围内低浓度的前金属离子。此外,基于GEM的生物传感器细胞在重金属浓度范围内自然生长,在37°C和最佳pH=7.0的培养基中,类似于野生型大肠杆菌的特征
    结论:最后,在这项研究中开发的新型基于GEM的生物传感器细胞可用于在正常细菌生理条件下检测低浓度范围(1-6ppb)的目标重金属。
    In this study, we designed a novel genetic circuit sensitive to Cd2+, Zn2+ and Pb2+ by mimicking the CadA/CadR operon system mediated heavy metal homeostasis mechanism of Pseudomonas aeruginosa. The regular DNA motifs on natural operon were reconfigured and coupled with the enhanced Green Fluorescent Protein (eGFP) reporter to develop a novel basic NOT type logic gate CadA/CadR-eGFP to respond metal ions mentioned above. A Genetically Engineered Microbial (GEM)-based biosensor (E.coli-BL21:pJET1.2-CadA/CadR-eGFP) was developed by cloning the chemically synthesised CadA/CadR-eGFP gene circuit into pJET1.2-plasmid and transforming into Escherichia coli (E. coli)-BL21 bacterial cells.
    The GEM-based biosensor cells indicated the reporter gene expression in the presence of Cd2+, Zn2+ and Pb2+ either singly or in combination. Further, the same biosensor cells calibrated for fluorescent intensity against heavy metal concentration generated linear graphs for Cd2+, Zn2+ and Pb2+ with the R2 values of 0.9809, 0.9761 and 0.9758, respectively as compared to non-specific metals, Fe3+ (0.0373), AsO43- (0.3825) and Ni2+ (0.8498) making our biosensor suitable for the detection of low concentration of the former metal ions in the range of 1-6 ppb. Furthermore, the GEM based biosensor cells were growing naturally within the concentration range of heavy metals, at 37 °C and optimum pH = 7.0 in the medium, resembling the characteristics of wildtype E.coli.
    Finally, the novel GEM based biosensor cells developed in this study can be applied for detection of targeted heavy metals in low concentration ranges (1-6 ppb) at normal bacterial physiological conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管无细胞蛋白质表达已广泛用于合成单一蛋白质,无细胞合成生物学迅速扩展到新的,更复杂的应用。一个这样的应用是复杂的遗传网络的原型设计或实现,涉及以精确的比例表达多种蛋白质。通常来自不同的质粒。然而,来自多个质粒的多种蛋白质的表达可能无意中导致意想不到的结果,表达的蛋白质水平的脱靶变化,一种称为质粒串扰的现象。这里,我们表明,即使在蛋白质表达增加与减少的定性水平上,质粒串扰的影响也取决于反应中质粒的浓度和参与表达的转录机制的类型。这种串扰可能会对遗传电路功能甚至简单实验结果的解释产生重大影响,因此在开发无细胞应用时应予以考虑。
    Although cell-free protein expression has been widely used for the synthesis of single proteins, cell-free synthetic biology has rapidly expanded to new, more complex applications. One such application is the prototyping or implementation of complex genetic networks involving the expression of multiple proteins at precise ratios, often from different plasmids. However, expression of multiple proteins from multiple plasmids may inadvertently result in unexpected, off-target changes to the levels of the proteins being expressed, a phenomenon termed plasmid crosstalk. Here, we show that the effects of plasmid crosstalk─even at the qualitative level of increases vs decreases in protein expression─depend on the concentration of plasmids in the reaction and the type of transcriptional machinery involved in the expression. This crosstalk can have a significant impact on genetic circuitry function and even interpretation of simple experimental results and thus should be taken into consideration during the development of cell-free applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The early clinical success and subsequent US Food and Drug Administration approval of chimeric antigen receptor (CAR)-T cell therapy for leukemia and lymphoma affirm that engineered T cells can be a powerful treatment for hematologic malignancies. Yet this success has not been replicated in solid tumors. Numerous challenges emerged from clinical experience and well-controlled preclinical animal models must be met to enable safe and efficacious CAR-T cell therapy in solid tumors. Here, we review recent advances in bioengineering strategies developed to enhance CAR-T cell therapy in solid tumors, focusing on targeted single-gene perturbation, genetic circuits design, cytokine engineering, and interactive biomaterials. These bioengineering approaches present a unique set of tools that synergize with CAR-T cells to overcome obstacles in solid tumors and achieve robust and long-lasting therapeutic efficacy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    动态,多输入基因调控网络(GRN)在自然界中普遍存在。基于CRISPR的多层遗传电路对于构建类似于天然存在的生物系统中发现的GRN具有很大的希望。我们开发了一种方法来创建高性能的可激活启动子,宽,和多输入CRISPR激活和干扰(CRISPRa/i)GRN。通过整合基于序列的设计和体内筛选,我们设计可激活的启动子,在基于大肠杆菌的无细胞系统中实现高达1,000倍的动态范围。这些组件使CRISPRaGRN具有六层深和四个分支宽。我们通过将依赖光的EL222光遗传系统的动态范围从6倍提高到34倍,显示了启动子工程工作流程的普遍性。此外,高动态范围启动子使小分子和蛋白质-蛋白质相互作用介导的CRISPRa系统成为可能。我们应用这些工具来构建响应输入的CRISPRa/iGRN,包括反馈回路,逻辑门,多层级联,和动态脉冲调制器。我们的工作为高动态范围可激活启动子的设计提供了一种可推广的方法,并使无细胞系统中的基因调控功能成为可能。
    Dynamic, multi-input gene regulatory networks (GRNs) are ubiquitous in nature. Multilayer CRISPR-based genetic circuits hold great promise for building GRNs akin to those found in naturally occurring biological systems. We develop an approach for creating high-performing activatable promoters that can be assembled into deep, wide, and multi-input CRISPR-activation and -interference (CRISPRa/i) GRNs. By integrating sequence-based design and in vivo screening, we engineer activatable promoters that achieve up to 1,000-fold dynamic range in an Escherichia coli-based cell-free system. These components enable CRISPRa GRNs that are six layers deep and four branches wide. We show the generalizability of the promoter engineering workflow by improving the dynamic range of the light-dependent EL222 optogenetic system from 6-fold to 34-fold. Additionally, high dynamic range promoters enable CRISPRa systems mediated by small molecules and protein-protein interactions. We apply these tools to build input-responsive CRISPRa/i GRNs, including feedback loops, logic gates, multilayer cascades, and dynamic pulse modulators. Our work provides a generalizable approach for the design of high dynamic range activatable promoters and enables classes of gene regulatory functions in cell-free systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    存在解决用于构建合成遗传网络的设计-构建-测试-学习(DBTL)循环的各种组件的计算工具,但通常不覆盖整个DBTL循环。该手稿介绍了端到端工具序列,这些工具一起形成了称为设计组装往返(DART)的DBTL环路。DART提供了遗传部分的合理选择和完善,以构建和测试电路。对实验过程的计算支持,元数据管理,标准化的数据收集和可重复的数据分析是通过先前发布的RoundTrip(RT)测试学习循环提供的。这项工作的主要重点是工具链的设计装配(DA)部分,它通过筛选多达数千个网络拓扑来改进以前的技术,以使用仅基于电路拓扑的动态行为得出的新颖的鲁棒性得分来实现鲁棒性能。此外,引入了新型的实验支持软件,用于遗传电路的组装。使用几种OR和NOR电路设计,提出了一个完整的通过分析设计的序列,有和没有结构冗余,在萌芽酵母中实施。DART的执行测试了设计工具的预测,特别是关于不同实验条件下的鲁棒性和可重现性。数据分析依赖于机器学习技术的新颖应用来分割双峰流式细胞术分布。有证据表明,在某些情况下,更复杂的构建可以在实验条件下赋予更多的鲁棒性和可重复性。图形抽象。
    Computational tools addressing various components of design-build-test-learn (DBTL) loops for the construction of synthetic genetic networks exist but do not generally cover the entire DBTL loop. This manuscript introduces an end-to-end sequence of tools that together form a DBTL loop called Design Assemble Round Trip (DART). DART provides rational selection and refinement of genetic parts to construct and test a circuit. Computational support for experimental process, metadata management, standardized data collection and reproducible data analysis is provided via the previously published Round Trip (RT) test-learn loop. The primary focus of this work is on the Design Assemble (DA) part of the tool chain, which improves on previous techniques by screening up to thousands of network topologies for robust performance using a novel robustness score derived from dynamical behavior based on circuit topology only. In addition, novel experimental support software is introduced for the assembly of genetic circuits. A complete design-through-analysis sequence is presented using several OR and NOR circuit designs, with and without structural redundancy, that are implemented in budding yeast. The execution of DART tested the predictions of the design tools, specifically with regard to robust and reproducible performance under different experimental conditions. The data analysis depended on a novel application of machine learning techniques to segment bimodal flow cytometry distributions. Evidence is presented that, in some cases, a more complex build may impart more robustness and reproducibility across experimental conditions. Graphical Abstract.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号