Excitation

励磁
  • 文章类型: Journal Article
    在开发过程中,小胶质细胞修剪多余的突触以改善神经元回路。在神经变性中,小胶质细胞介导的突触修剪在回路重塑和功能障碍中的作用对于开发旨在调节小胶质细胞功能的疗法非常重要.在这里,我们分析了小胶质细胞在内部视网膜中变性突触后神经元的突触分解中的作用。诱导短暂性眼压升高损伤视网膜神经节细胞后,小胶质细胞数量增加,转变为阿米波形态,并表现出更大的过程运动。此外,由于小胶质细胞数量增加,小胶质细胞与突触成分的共定位在整个内部丛状层中,并且在单个神经节细胞树突上有兴奋性突触位点。小胶质细胞耗竭部分恢复神经节细胞功能,提示小胶质细胞激活在早期神经变性中可能具有神经毒性。我们的结果证明了小胶质细胞在退化回路中突触分解中的重要作用,强调它们在神经元损伤后早期募集到突触部位。
    短暂性眼压升高后早期:小胶质细胞数量增加,复杂性,和过程运动内部丛状层中小胶质细胞-突触接触增加视网膜神经节细胞树突上的小胶质细胞-突触接触增加小胶质细胞耗尽部分恢复神经节细胞功能。
    During development, microglia prune excess synapses to refine neuronal circuits. In neurodegeneration, the role of microglia-mediated synaptic pruning in circuit remodeling and dysfunction is important for developing therapies aimed at modulating microglial function. Here we analyzed the role of microglia in the synapse disassembly of degenerating postsynaptic neurons in the inner retina. After inducing transient intraocular pressure elevation to injure retinal ganglion cells, microglia increase in number, shift to ameboid morphology, and exhibit greater process movement. Furthermore, due to the greater number of microglia, there is increased colocalization of microglia with synaptic components throughout the inner plexiform layer and with excitatory synaptic sites along individual ganglion cell dendrites. Microglia depletion partially restores ganglion cell function, suggesting that microglia activation may be neurotoxic in early neurodegeneration. Our results demonstrate the important role of microglia in synapse disassembly in degenerating circuits, highlighting their recruitment to synaptic sites early after neuronal injury.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本工作旨在研究磁流变精加工工艺的影响,利用低频交变磁场,6063铝合金的精加工性能。该研究调查了关键励磁参数的影响,如电流,频率,激励间隙,和铁粉直径对成品工件的材料去除和表面粗糙度(Ra)的影响。本研究采用单因素实验方法,并通过Zigo非接触白光干涉仪对光洁度表面进行分析。加工区域的磁场强度随励磁电流的增大而增大,随励磁间隙的增大而减小。当当前频率设置为1Hz时,磨料在磁簇中的循环和更新是最充分的,导致工件的最佳表面粗糙度值。根据激励参数的实验结果,选择更合适的工艺参数进行两阶段整理实验。6063铝合金的表面粗糙度由285nm提高到3.54nm。实验结果表明,使用低频交变磁场的磁流变精加工是获得6063铝合金纳米级精加工的潜在技术。
    The present work is aimed at studying the effects of the magnetorheological finishing process, using a low-frequency alternating magnetic field, on the finishing performance of 6063 aluminum alloy. The study investigates the influence of key excitation parameters such as current, frequency, excitation gap, and iron powder diameter on the material removal and surface roughness (Ra) of the finished workpiece by experiments. This study employs a single-factor experimental method, and the finish surface is analyzed by a Zigo non-contact white light interferometer. The magnetic field strength in the processing area increases with the increase in the excitation current and decreases with the increase in the excitation gap. When the current frequency is set to 1 Hz, the circulation and renewal of abrasives in the magnetic cluster is most sufficient, resulting in the optimal surface roughness value for the workpiece. According to the experimental results of the excitation parameters, more suitable process parameters were selected for a two-stage finishing experiment. The surface roughness of 6063 aluminum alloy was improved from 285 nm to 3.54 nm. Experimental results highlighted that the magnetorheological finishing using a low-frequency alternating magnetic field is a potential technique for obtaining nano-scale finishing of the 6063 aluminum alloy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    哪种现象会减慢过冷液体的动力学并将其变成玻璃,这是一个长期存在的凝聚态问题。大多数流行的理论认为,随着温度的降低,许多事件必须以协调的方式发生在一个不断增长的长度尺度上,才能发生放松。相反,其他方法认为,与一些粒子或“激发”的基本重排相关的局部屏障控制着动力学。为了解决这个难题,我们的主要结果是引入一种算法,系统激励极限,可以系统地从任何给定的配置中提取数百种激发及其能量。我们还提供活化能的测量,表征液体动力学,基于快速淬火和再加热。我们在多分散颗粒的流行液体模型中使用这两种方法。已知这种多分散模型捕获玻璃化转变的标志,并且可以有效地平衡直至毫秒时间尺度。分析表明,协同作用不能控制此类液体的脆性:局部屏障能量的变化决定了活化能的变化。更一般地说,这些方法现在可以用来测量任何液体模型的协同程度。
    Which phenomenon slows down the dynamics in supercooled liquids and turns them into glasses is a long-standing question of condensed matter. Most popular theories posit that as the temperature decreases, many events must occur in a coordinated fashion on a growing length scale for relaxation to occur. Instead, other approaches consider that local barriers associated with the elementary rearrangement of a few particles or \"excitations\" govern the dynamics. To resolve this conundrum, our central result is to introduce an algorithm, Systematic Excitation ExtRaction, which can systematically extract hundreds of excitations and their energy from any given configuration. We also provide a measurement of the activation energy, characterizing the liquid dynamics, based on fast quenching and reheating. We use these two methods in a popular liquid model of polydisperse particles. Such polydisperse models are known to capture the hallmarks of the glass transition and can be equilibrated efficiently up to millisecond time scales. The analysis reveals that cooperative effects do not control the fragility of such liquids: the change of energy of local barriers determines the change of activation energy. More generally, these methods can now be used to measure the degree of cooperativity of any liquid model.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胆碱和叶酸是胎儿大脑发育的关键营养素,但是他们在妊娠期间的影响时间以前没有被描述过。在妊娠的不同时期,α7-烟碱受体的胆碱刺激促进γ-氨基丁酸(GABA)受体从兴奋性转化为抑制性,并募集GluR1-R2受体,以加快对谷氨酸的兴奋性反应。通过P50脑听觉诱发反应评估了159名新生儿的胎儿发育抑制和兴奋的结果。配对刺激,S1、S2相隔500毫秒。响应S1的较高P50振幅(P50S1microV)评估激励,较低的P50S2microV评估了这种配对刺激范式中的抑制作用。抑制的发展仅与妊娠16周时母体胆碱血浆浓度和叶酸的补充有关。兴奋的发展仅与28周时的母体胆碱有关。妊娠后期较高的母体胆碱浓度并不能弥补早期较低的浓度。4岁时,儿童行为清单1½-5年中行为问题的增加与新生儿抑制和兴奋有关。因此,在相对较短的妊娠期间,与较低的胆碱和叶酸盐相关的抑制和兴奋的不完全发展对儿童发育具有持久的影响。
    Choline and folate are critical nutrients for fetal brain development, but the timing of their influence during gestation has not been previously characterized. At different periods during gestation, choline stimulation of α7-nicotinic receptors facilitates conversion of γ-aminobutyric acid (GABA) receptors from excitatory to inhibitory and recruitment of GluR1-R2 receptors for faster excitatory responses to glutamate. The outcome of the fetal development of inhibition and excitation was assessed in 159 newborns by P50 cerebral auditory-evoked responses. Paired stimuli, S1, S2, were presented 500 msec apart. Higher P50 amplitude in response to S1 (P50S1microV) assesses excitation, and lower P50S2microV assesses inhibition in this paired-stimulus paradigm. Development of inhibition was related solely to maternal choline plasma concentration and folate supplementation at 16 weeks\' gestation. Development of excitation was related only to maternal choline at 28 weeks. Higher maternal choline concentrations later in gestation did not compensate for earlier lower concentrations. At 4 years of age, increased behavior problems on the Child Behavior Checklist 1½-5yrs were related to both newborn inhibition and excitation. Incomplete development of inhibition and excitation associated with lower choline and folate during relatively brief periods of gestation thus has enduring effects on child development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    重复经颅磁刺激(rTMS)是神经病学和精神病学中广泛使用的治疗工具,但其细胞和分子机制尚未完全了解。标准化刺激参数,特别是电场强度,在实验和临床环境中至关重要。它可以在研究中进行有意义的比较,并有助于将研究结果转化为临床实践。然而,受刺激的神经元和网络固有的生物物理特性对rTMS协议结果的影响仍未得到很好的理解。因此,实现跨不同大脑区域和受试者的生物效应标准化提出了重大挑战。
    这项研究比较了10Hz重复磁刺激(rMS)对小鼠和大鼠海马组织培养物的影响,提供在标准化条件下相同刺激协议对类似神经元网络的影响的见解。
    我们观察到先前描述的小鼠和大鼠组织培养中CA1锥体神经元的兴奋性和抑制性突触强度的可塑性变化,但是在大鼠组织培养物中诱导rMS诱导的突触可塑性需要更高的刺激强度。通过神经元结构和功能特性的系统比较和计算模型,我们发现仅CA1锥体细胞的形态参数不足以解释观察到的组间差异.尽管小鼠和大鼠CA1神经元的形态没有显着差异,模拟证实轴突形态显著影响单个细胞活化阈值。值得注意的是,固有细胞特性的差异足以解释在大鼠组织培养物中诱导突触可塑性所需的10%的高强度。
    这些发现证明了轴突形态和内在细胞特性在预测rTMS的可塑性效应中的关键重要性,对旨在预测和标准化rTMS生物学效应的计算机模型的开发具有重要意义。
    UNASSIGNED: Repetitive transcranial magnetic stimulation (rTMS) is a widely used therapeutic tool in neurology and psychiatry, but its cellular and molecular mechanisms are not fully understood. Standardizing stimulus parameters, specifically electric field strength, is crucial in experimental and clinical settings. It enables meaningful comparisons across studies and facilitates the translation of findings into clinical practice. However, the impact of biophysical properties inherent to the stimulated neurons and networks on the outcome of rTMS protocols remains not well understood. Consequently, achieving standardization of biological effects across different brain regions and subjects poses a significant challenge.
    UNASSIGNED: This study compared the effects of 10 Hz repetitive magnetic stimulation (rMS) in entorhino-hippocampal tissue cultures from mice and rats, providing insights into the impact of the same stimulation protocol on similar neuronal networks under standardized conditions.
    UNASSIGNED: We observed the previously described plastic changes in excitatory and inhibitory synaptic strength of CA1 pyramidal neurons in both mouse and rat tissue cultures, but a higher stimulation intensity was required for the induction of rMS-induced synaptic plasticity in rat tissue cultures. Through systematic comparison of neuronal structural and functional properties and computational modeling, we found that morphological parameters of CA1 pyramidal neurons alone are insufficient to explain the observed differences between the groups. Although morphologies of mouse and rat CA1 neurons showed no significant differences, simulations confirmed that axon morphologies significantly influence individual cell activation thresholds. Notably, differences in intrinsic cellular properties were sufficient to account for the 10% higher intensity required for the induction of synaptic plasticity in the rat tissue cultures.
    UNASSIGNED: These findings demonstrate the critical importance of axon morphology and intrinsic cellular properties in predicting the plasticity effects of rTMS, carrying valuable implications for the development of computer models aimed at predicting and standardizing the biological effects of rTMS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    众所周知,运动有助于健康和神经系统疾病的运动技能学习。来自大脑刺激的证据,基因分型,和帕金森氏病的研究表明,多巴胺D2受体,以及皮质兴奋和抑制(E:I)平衡的变化,是运动增强运动学习的主要候选人。然而,缺乏使用实验性药理学挑战的因果证据。我们假设多巴胺D2受体对运动引起的E:I平衡变化的调节作用将决定运动技能获得的幅度。为了测试这个,我们使用双脉冲经颅磁刺激(TMS)在22名健康的女性和男性中测量了运动引起的兴奋和抑制变化,然后让参与者学习一种新的运动技能-顺序视觉等距捏任务(SVIPT)。我们研究了D2受体阻滞剂(800mg舒必利)对这些措施的影响,双盲,安慰剂对照设计。我们的关键结果是,运动技能的获得是由D2受体和E:I平衡之间的相互作用驱动的。具体来说,较差的技能学习与舒必利条件下E:I平衡的衰减变化有关,而这种相互作用在安慰剂中并不明显。我们的结果表明,以运动为基础的运动技能获得受运动皮层电路上D2受体活性的因果关系影响。重要性陈述众所周知,锻炼有利于获得新的运动技能,但是驱动这种现象的神经机制还没有得到很好的理解。我们测试了运动对皮质神经生理学和运动技能学习的影响是否归因于多巴胺能神经调节。我们获得了高强度心肺运动前后皮质兴奋和抑制的测量,然后让参与者学习一种新的运动技能。我们提供了因果证据,证明运动技能的获得是由多巴胺D2受体与运动引起的皮质兴奋:抑制平衡之间的相互作用驱动的。这些发现对处方运动以改善多巴胺功能障碍障碍的运动学习具有重要意义。比如帕金森病。
    Exercise is known to benefit motor skill learning in health and neurological disease. Evidence from brain stimulation, genotyping, and Parkinson\'s disease studies converge to suggest that the dopamine D2 receptor, and shifts in the cortical excitation and inhibition (E:I) balance, are prime candidates for the drivers of exercise-enhanced motor learning. However, causal evidence using experimental pharmacological challenge is lacking. We hypothesized that the modulatory effect of the dopamine D2 receptor on exercise-induced changes in the E:I balance would determine the magnitude of motor skill acquisition. To test this, we measured exercise-induced changes in excitation and inhibition using paired-pulse transcranial magnetic stimulation (TMS) in 22 healthy female and male humans, and then had participants learn a novel motor skill-the sequential visual isometric pinch task (SVIPT). We examined the effect of D2 receptor blockade (800 mg sulpiride) on these measures within a randomized, double-blind, placebo-controlled design. Our key result was that motor skill acquisition was driven by an interaction between the D2 receptor and E:I balance. Specifically, poorer skill learning was related to an attenuated shift in the E:I balance in the sulpiride condition, whereas this interaction was not evident in placebo. Our results demonstrate that exercise-primed motor skill acquisition is causally influenced by D2 receptor activity on motor cortical circuits.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    皮质醇水平与可转座为应激反应性的反应之间的经典倒U形关系的复杂性导致对压力对大脑和行为的健康和毒性影响的机制的不完全理解。更清晰的,更详细,这些关系的图片可以通过整合大规模大脑网络上的皮质醇效应来获得,特别是,通过从抑制和激励的角度关注神经网络配置。Semon和Hebb的细胞记忆理论的统一观点将神经元集合中的生物物理和代谢变化与集体突触的加强联系起来。在这个意义上,神经元的记录能力,store,和检索信息直接关系到其连通性和代谢储备的适应能力。这里,我们使用任务激活的细胞集合或简单的Engram细胞作为例子来证明对压力的适应性行为反应是由中间神经元和兴奋性神经元网络内部和之间的集体突触强度引起的。
    The complexity of the classical inverted U-shaped relationship between cortisol levels and responses transposable to stress reactivity has led to an incomplete understanding of the mechanisms enabling healthy and toxic effects of stress on brain and behavior. A clearer, more detailed, picture of those relationships can be obtained by integrating cortisol effects on large-scale brain networks, in particular, by focusing on neural network configurations from the perspective of inhibition and excitation. A unifying view of Semon and Hebb\'s theories of cellular memory links the biophysical and metabolic changes in neuronal ensembles to the strengthening of collective synapses. In that sense, the neuronal capacity to record, store, and retrieve information directly relates to the adaptive capacity of its connectivity and metabolic reserves. Here, we use task-activated cell ensembles or simply engram cells as an example to demonstrate that the adaptive behavioral responses to stress result from collective synapse strength within and across networks of interneurons and excitatory ones.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在神经发育障碍中发现了与突触小泡周期有关的突触前蛋白中越来越多的致病变体。这些突触小泡周期障碍的临床特征是多种多样的,但最普遍的表型包括智力残疾,癫痫,运动障碍,大脑视觉障碍,和精神症状(Verhage和Sørensen,2020年;Bonnycastle等人。,2021年;约翰等人。,2021年;梅兰等人。,2021)。在越来越多的突触小泡周期障碍中,最常见的是由syntaxin结合蛋白1(STXBP1,也称为MUNC18-1)的新杂合致病变异引起的STXBP1脑病(Verhage和Sørensen,2020年;约翰等人。,2021)。STXBP1是突触前神经递质释放的必需蛋白。其单倍体功能不足是主要的疾病机制,并损害兴奋性和抑制性神经递质的释放。然而,对广谱神经表型的疾病发病机制和细胞起源了解甚少。在这里,我们产生了细胞类型特异性的Stxbp1单倍体不足的雄性和雌性小鼠,并表明在GABA能/甘氨酸能神经元中Stxbp1单倍体不足会导致发育延迟,癫痫,电机,认知,和精神缺陷,概括了在组成型Stxbp1单倍体不足小鼠和STXBP1脑病中观察到的大多数表型。相比之下,谷氨酸能神经元中的Stxbp1单倍体不足导致一小部分认知和癫痫发作表型,与GABA能/甘氨酸能神经元中的Stxbp1单倍体不足引起的表型不同。因此,兴奋性和抑制性信号的对比作用揭示了GABA能/甘氨酸能功能障碍是STXBP1脑病的关键疾病机制,并提示了通过靶向特定神经递质系统选择性调节疾病表型的可能性.意义陈述STXBP1中的杂合致病变异是小儿癫痫的五大原因,也是神经发育障碍的最常见原因之一。它们影响突触前神经递质的释放和神经发育障碍中常见的广泛的神经系统特征,但是疾病的发病机制和这些表型的细胞类型仍不清楚。在这里,我们报道了GABA能/甘氨酸能和谷氨酸能神经元在STXBP1脑病发病机制中的不同作用。这些结果将通过提示针对不同神经元类型的治疗STXBP1脑病的治疗策略的潜在结果来帮助治疗干预措施的发展。
    An increasing number of pathogenic variants in presynaptic proteins involved in the synaptic vesicle cycle are being discovered in neurodevelopmental disorders. The clinical features of these synaptic vesicle cycle disorders are diverse, but the most prevalent phenotypes include intellectual disability, epilepsy, movement disorders, cerebral visual impairment, and psychiatric symptoms ( Verhage and Sørensen, 2020; Bonnycastle et al., 2021; John et al., 2021; Melland et al., 2021). Among this growing list of synaptic vesicle cycle disorders, the most frequent is STXBP1 encephalopathy caused by de novo heterozygous pathogenic variants in syntaxin-binding protein 1 (STXBP1, also known as MUNC18-1; Verhage and Sørensen, 2020; John et al., 2021). STXBP1 is an essential protein for presynaptic neurotransmitter release. Its haploinsufficiency is the main disease mechanism and impairs both excitatory and inhibitory neurotransmitter release. However, the disease pathogenesis and cellular origins of the broad spectrum of neurological phenotypes are poorly understood. Here we generate cell type-specific Stxbp1 haploinsufficient male and female mice and show that Stxbp1 haploinsufficiency in GABAergic/glycinergic neurons causes developmental delay, epilepsy, and motor, cognitive, and psychiatric deficits, recapitulating majority of the phenotypes observed in the constitutive Stxbp1 haploinsufficient mice and STXBP1 encephalopathy. In contrast, Stxbp1 haploinsufficiency in glutamatergic neurons results in a small subset of cognitive and seizure phenotypes distinct from those caused by Stxbp1 haploinsufficiency in GABAergic/glycinergic neurons. Thus, the contrasting roles of excitatory and inhibitory signaling reveal GABAergic/glycinergic dysfunction as a key disease mechanism of STXBP1 encephalopathy and suggest the possibility to selectively modulate disease phenotypes by targeting specific neurotransmitter systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在生理条件下,细胞内氯化物浓度远低于细胞外氯化物浓度。由于GABAA通道可透过阴离子,GABAA的反转潜力非常接近Cl-,是细胞内和细胞外空间中最丰富的游离阴离子。细胞内氯化物受NKCC1和KCC2的活性比调节,这两种导入和导出Cl-的氯化物阳离子共转运蛋白,分别。由于GABAA逆转电位与大多数神经元的静息膜电位值之间的紧密关系,细胞内氯化物的微小变化具有主要的功能影响,这使得GABAA成为一个独特灵活的信号系统。在成人大脑的大多数神经元中,GABAA逆转电位比静息膜电位略负,这使得GABAA超极化。GABAA逆转电位的变化是许多条件下的共同特征,因为它们是NKCC1-KCC2活性比失衡的结果。在大多数情况下(包括阿尔茨海默病,精神分裂症,和唐氏综合症),GABAA变得去极化,导致网络不同步和行为损害。在其他情况下(新生儿炎症和神经性疼痛),然而,GABAA逆转电位变为超负,通过有效的电路停用来影响行为。
    In physiological conditions, the intracellular chloride concentration is much lower than the extracellular. As GABAA channels are permeable to anions, the reversal potential of GABAA is very close to that of Cl-, which is the most abundant free anion in the intra- and extracellular spaces. Intracellular chloride is regulated by the activity ratio of NKCC1 and KCC2, two chloride-cation cotransporters that import and export Cl-, respectively. Due to the closeness between GABAA reversal potential and the value of the resting membrane potential in most neurons, small changes in intracellular chloride have a major functional impact, which makes GABAA a uniquely flexible signaling system. In most neurons of the adult brain, the GABAA reversal potential is slightly more negative than the resting membrane potential, which makes GABAA hyperpolarizing. Alterations in GABAA reversal potential are a common feature in numerous conditions as they are the consequence of an imbalance in the NKCC1-KCC2 activity ratio. In most conditions (including Alzheimer\'s disease, schizophrenia, and Down\'s syndrome), GABAA becomes depolarizing, which causes network desynchronization and behavioral impairment. In other conditions (neonatal inflammation and neuropathic pain), however, GABAA reversal potential becomes hypernegative, which affects behavior through a potent circuit deactivation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    精神和神经症状,以及认知缺陷,代表与自身免疫性脑炎的可变形式相关的突出表型,与自身抗体靶向的神经递质受体无关。然而,这些共同的主要神经精神症状的机制基础仍然不清楚。这里,我们研究了患者来源的单克隆抗体对海马网络中谷氨酸能NMDAR(NMDARmAb)和抑制性GABAaR(GABAaRmAb)信号传导的影响.出乎意料的是,兴奋性和抑制性突触受体膜动力学,内容和传输被NMDAR或GABAaRmAb改变,与自身抗体的亲和力或拮抗作用无关。NMDARmAb对抑制性突触的作用和GABAaRmAb对兴奋性突触的作用需要神经元活性并涉及蛋白激酶信号传导。在细胞层面,两种自身抗体都增加了主细胞输入的激发/抑制平衡。此外,NMDAR或GABAaRmAb通过主细胞和中间神经元特性的不同改变导致海马网络的过度激活。因此,针对兴奋性NMDAR或抑制性GABAaR的自身抗体通过共享和不同机制的组合触发会聚性网络功能障碍。
    Psychiatric and neurological symptoms, as well as cognitive deficits, represent a prominent phenotype associated with variable forms of autoimmune encephalitis, regardless of the neurotransmitter receptor targeted by autoantibodies. The mechanistic underpinnings of these shared major neuropsychiatric symptoms remain however unclear. Here, we investigate the impacts of patient-derived monoclonal autoantibodies against the glutamatergic NMDAR (NMDAR mAb) and inhibitory GABAaR (GABAaR mAb) signalling in the hippocampal network. Unexpectedly, both excitatory and inhibitory synaptic receptor membrane dynamics, content and transmissions are altered by NMDAR or GABAaR mAb, irrespective of the affinity or antagonistic effect of the autoantibodies. The effect of NMDAR mAb on inhibitory synapses and GABAaR mAb on excitatory synapses requires neuronal activity and involves protein kinase signalling. At the cell level, both autoantibodies increase the excitation/inhibition balance of principal cell inputs. Furthermore, NMDAR or GABAaR mAb leads to hyperactivation of hippocampal networks through distinct alterations of principal cell and interneuron properties. Thus, autoantibodies targeting excitatory NMDAR or inhibitory GABAaR trigger convergent network dysfunctions through a combination of shared and distinct mechanisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号