Drug Delivery Systems

药物输送系统
  • 文章类型: Journal Article
    雷帕霉素减缓多囊肾病(PKD)小鼠模型的膀胱形成,但在临床试验中失败,可能是由于药物剂量不足。为了在不增加剂量的情况下提高药物效率,可以使用肾脏特异性药物递送。中尺度纳米颗粒(MNP)选择性地靶向啮齿动物的近端小管。我们探讨了MNPs是否可以靶向囊性肾小管,以及雷帕霉素包裹的MNPs(RapaMNPs)是否可以减缓Pkd1基因敲除(KO)小鼠的囊肿生长。在成年Pkd1KO小鼠中静脉内施用MNP。在8、24、48或72小时后收集血清和器官以测量MNP定位,mTOR水平,和雷帕霉素浓度。然后将Pkd1KO小鼠每两周注射一次RapaMNP,持续6周,雷帕霉素,或载体,以确定药物对肾囊肿生长的疗效。单次注射MNP导致肾脏优先于其他器官的积累,特别是在小管和囊肿中。同样,与肝脏相比,一次RapaMNP注射导致更高的药物递送到肾脏,并表现出持续的mTOR抑制。每两周注射RapaMNP,雷帕霉素或载体6周导致mTOR抑制不一致,囊肿指数变化不大,however.MNPs作为一个有效的短期,肾脏特异性输送系统,但长期RapaMNP未能减缓Pkd1KO小鼠的囊肿进展。
    Rapamycin slows cystogenesis in murine models of polycystic kidney disease (PKD) but failed in clinical trials, potentially due to insufficient drug dosing. To improve drug efficiency without increasing dose, kidney-specific drug delivery may be used. Mesoscale nanoparticles (MNP) selectively target the proximal tubules in rodents. We explored whether MNPs can target cystic kidney tubules and whether rapamycin-encapsulated-MNPs (RapaMNPs) can slow cyst growth in Pkd1 knockout (KO) mice. MNP was intravenously administered in adult Pkd1KO mice. Serum and organs were harvested after 8, 24, 48 or 72 h to measure MNP localization, mTOR levels, and rapamycin concentration. Pkd1KO mice were then injected bi-weekly for 6 weeks with RapaMNP, rapamycin, or vehicle to determine drug efficacy on kidney cyst growth. Single MNP injections lead to kidney-preferential accumulation over other organs, specifically in tubules and cysts. Likewise, one RapaMNP injection resulted in higher drug delivery to the kidney compared to the liver, and displayed sustained mTOR inhibition. Bi-weekly injections with RapaMNP, rapamycin or vehicle for 6 weeks resulted in inconsistent mTOR inhibition and little change in cyst index, however. MNPs serve as an effective short-term, kidney-specific delivery system, but long-term RapaMNP failed to slow cyst progression in Pkd1KO mice.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    纳米凝胶为精确的药物输送提供了希望,而解决药物输送障碍对于有效的前列腺癌(PCa)管理至关重要。我们开发了一种可注射的弹性蛋白纳米凝胶(ENG),用于有效的药物递送系统,通过递送Decursin来克服去势抵抗性前列腺癌(CRPC),一种阻断PCa的Wnt/β连环蛋白途径的小分子抑制剂。ENG表现出良好的特性,如生物相容性,灵活性,和低毒性。在这项研究中,尺寸,形状,表面电荷,化学成分,热稳定性,和ENG的其他特性用于确认成功合成并将Decursin(DEC)掺入到弹性蛋白纳米凝胶(ENG)中用于前列腺癌治疗。体外研究表明,DEC从ENG持续释放超过120小时,具有pH依赖性释放模式。DU145细胞系诱导DEC-ENG的中等细胞毒性表明纳米药物对细胞活力有影响,并有助于在治疗功效和安全性之间取得平衡,而与游离DEC相比,EPR效应能够靶向药物递送至前列腺肿瘤部位。形态学分析进一步支持DEC-ENG诱导细胞死亡的有效性。总的来说,这些发现强调了ENG封装的decurin作为CRPC靶向给药系统的有希望的作用。
    Nanogels offer hope for precise drug delivery, while addressing drug delivery hurdles is vital for effective prostate cancer (PCa) management. We developed an injectable elastin nanogels (ENG) for efficient drug delivery system to overcome castration-resistant prostate cancer (CRPC) by delivering Decursin, a small molecule inhibitor that blocks Wnt/βcatenin pathways for PCa. The ENG exhibited favourable characteristics such as biocompatibility, flexibility, and low toxicity. In this study, size, shape, surface charge, chemical composition, thermal stability, and other properties of ENG were used to confirm the successful synthesis and incorporation of Decursin (DEC) into elastin nanogels (ENG) for prostate cancer therapy. In vitro studies demonstrated sustained release of DEC from the ENG over 120 h, with a pH-dependent release pattern. DU145 cell line induces moderate cytotoxicity of DEC-ENG indicates that nanomedicine has an impact on cell viability and helps strike a balance between therapeutics efficacy and safety while the EPR effect enables targeted drug delivery to prostate tumor sites compared to free DEC. Morphological analysis further supported the effectiveness of DEC-ENG in inducing cell death. Overall, these findings highlight the promising role of ENG-encapsulated decursin as a targeted drug delivery system for CRPC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在这项研究中,采用壳聚糖低分子量(LCH)和壳聚糖中分子量(MCH)封装富含绿原酸和二咖啡酰奎尼酸(DCQAs)的yarrow提取物,该提取物对结肠腺癌细胞具有抗增殖活性。通过使用两种不同的技术:离子凝胶化和喷雾干燥进行CH微米/纳米颗粒的设计以增加提取物结肠递送。获得的离子凝胶化纳米粒子比喷雾干燥微粒更小,并且具有更高的产率值,但喷雾干燥微粒在包封效率(EE)方面表现最佳(>94%),还允许包含更大量的提取物。使用LCH设计的喷雾干燥微粒的LCH:提取物比例为6:1(1.25mg/mL),平均直径为1.31±0.21µm,EE值>93%,对于所有研究的酚类化合物。该制剂中包含的酚类化合物的释放曲线,在胃肠道pH值(2和7.4),向他们中的大多数展示了一个小的初始版本,随后在1小时增加,绿原酸在3小时时呈现较高的释放值(在pH2时为56.91%;在pH7.4时为44.45%)。3小时的DCQAs释放范围在9.01-40.73%之间,1,5-和3,4-DCQA更高。胃肠消化后,67.65%的绿原和大多数DCQAs保持包封。因此,可以提出喷雾干燥微粒作为一种有前途的载体,以增加先前描述为针对结肠直肠癌的潜在药剂的yarrow酚类化合物(主要是绿原酸和DCQAs)的结肠递送。
    In this study, chitosan low molecular weight (LCH) and chitosan medium molecular weight (MCH) were employed to encapsulate a yarrow extract rich in chlorogenic acid and dicaffeoylquinic acids (DCQAs) that showed antiproliferative activity against colon adenocarcinoma cells. The design of CH micro/nanoparticles to increase the extract colon delivery was carried out by using two different techniques: ionic gelation and spray drying. Ionic gelation nanoparticles obtained were smaller and presented higher yields values than spray-drying microparticles, but spray-drying microparticles showed the best performance in terms of encapsulation efficiency (EE) (> 94%), also allowing the inclusion of a higher quantity of extract. Spray-drying microparticles designed using LCH with an LCH:extract ratio of 6:1 (1.25 mg/mL) showed a mean diameter of 1.31 ± 0.21 µm and EE values > 93%, for all phenolic compounds studied. The release profile of phenolic compounds included in this formulation, at gastrointestinal pHs (2 and 7.4), showed for most of them a small initial release, followed by an increase at 1 h, with a constant release up to 3 h. Chlorogenic acid presented the higher release values at 3 h (56.91% at pH 2; 44.45% at pH 7.4). DCQAs release at 3 h ranged between 9.01- 40.73%, being higher for 1,5- and 3,4-DCQAs. After gastrointestinal digestion, 67.65% of chlorogenic and most DCQAs remained encapsulated. Therefore, spray-drying microparticles can be proposed as a promising vehicle to increase the colon delivery of yarrow phenolics compounds (mainly chlorogenic acid and DCQAs) previously described as potential agents against colorectal cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    皮肤黑色素瘤被认为是最危险的皮肤癌,因为它与高转移风险有关。高死亡率和对不同治疗方案的高耐药性。金雀异黄素是一种具有已知化疗活性的天然异黄酮。不幸的是,它具有低生物利用度,由于其水溶性差和过度代谢。在目前的研究中,将染料木素掺入转移体水凝胶中以提高其生物利用度。对所制备的转移体制剂进行以下表征:粒度;多分散指数;ζ电位;包封率;TEM;FTIR;DSC;XRD;体外药物释放;粘度;pH;3D皮肤黑素瘤球体的离体抗肿瘤活性和在不同储存温度下的1年稳定性研究。优化的制剂具有高的包封效率,具有将促进其通过皮肤渗透的优异的粒度。传递体具有球形,具有持续的药物释放曲线。染料木黄酮转移体的抗肿瘤活性评估表明,染料木黄酮是一种有效的化学治疗剂,当掺入转移体中时,其通过黑素瘤球体的渗透能力增强。稳定性研究结果表明我们的制剂具有高的物理和化学稳定性。所有这些结果提供了证据,表明我们的染料木黄酮转移脂质体水凝胶是皮肤黑色素瘤的有希望的治疗选择。
    Skin melanoma is considered the most dangerous form of skin cancer due to its association with high risk of metastasis, high mortality rate and high resistance to different treatment options. Genistein is a natural isoflavonoid with known chemotherapeutic activity. Unfortunately, it has low bioavailability due to its poor aqueous solubility and excessive metabolism. In the current study, genistein was incorporated into transferosomal hydrogel to improve its bioavailability. The prepared transferosomal formulations were characterized regarding: particle size; polydispersity index; zeta potential; encapsulation efficiency; TEM; FTIR; DSC; XRD; in vitro drug release; viscosity; pH; ex vivo anti-tumor activity on 3D skin melanoma spheroids and 1-year stability study at different storage temperatures. The optimized formulation has high encapsulation efficiency with an excellent particle size that will facilitate its penetration through the skin. The transfersomes have a spherical shape with sustained drug release profile. The anti-tumor activity evaluation of genistein transfersome revealed that genistein is a potent chemotherapeutic agent with enhanced penetration ability through the melanoma spheroids when incorporated into transfersomes. Stability study results demonstrate the high physical and chemical stability of our formulations. All these outcomes provide evidence that our genistein transferosomal hydrogel is a promising treatment option for skin melanoma.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    血管生成是形成新血管的生理过程,在癌症等看似无关的疾病中具有病理重要性,糖尿病,和各种炎症性疾病。针对血管生成的治疗对这些类型的疾病有希望,但目前的抗血管生成药物在递送和副作用方面具有严重的局限性。这需要探索替代方法,如基于生物分子的药物。蛋白质,脂质,寡核苷酸最近在生物医学中变得流行,特别是作为治疗药物的生物相容性成分。其优异的生物利用度和潜在的生物活性和免疫原性特性使其成为药物发现或药物递送系统的主要候选者。基于脂质的脂质体已成为靶向纳米颗粒(NP)递送的标准载体,而蛋白质和核苷酸NP显示出作为智能NP的环境敏感性递送的希望。它们的治疗应用最初受到循环时间短和制造困难的阻碍,但纳米加工和NP工程的最新发展已经找到了规避这些缺点的方法。大大提高了生物分子NP的实用性。在这次审查中,我们将简要讨论基于生物分子的NP如何改善基于抗血管生成的治疗.
    Angiogenesis is a physiological process of forming new blood vessels that has pathological importance in seemingly unrelated illnesses like cancer, diabetes, and various inflammatory diseases. Treatment targeting angiogenesis has shown promise for these types of diseases, but current anti-angiogenic agents have critical limitations in delivery and side-effects. This necessitates exploration of alternative approaches like biomolecule-based drugs. Proteins, lipids, and oligonucleotides have recently become popular in biomedicine, specifically as biocompatible components of therapeutic drugs. Their excellent bioavailability and potential bioactive and immunogenic properties make them prime candidates for drug discovery or drug delivery systems. Lipid-based liposomes have become standard vehicles for targeted nanoparticle (NP) delivery, while protein and nucleotide NPs show promise for environment-sensitive delivery as smart NPs. Their therapeutic applications have initially been hampered by short circulation times and difficulty of fabrication but recent developments in nanofabrication and NP engineering have found ways to circumvent these disadvantages, vastly improving the practicality of biomolecular NPs. In this review, we are going to briefly discuss how biomolecule-based NPs have improved anti-angiogenesis-based therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    众所周知,破骨细胞活性受到细胞内pH波动的显著影响。因此,pH敏感的门控纳米药物递送系统代表了减轻破骨细胞过度活性的有希望的治疗方法。我们之前的研究表明,柚皮苷,一种天然类黄酮,有效减轻破骨细胞活性。然而,柚皮苷的口服利用率低,半衰期短,阻碍了其临床应用。我们开发了一种药物递送系统,其中壳聚糖,作为看门人,包覆载有柚皮苷(CS@MSNs-柚皮苷)的介孔二氧化硅纳米颗粒。然而,CS@MSNs-柚皮苷对破骨细胞的抑制作用和潜在机制尚不清楚,保证进一步的研究。
    首先,我们合成了CS@MSNs-柚皮苷,并进行了全面表征。我们还测量了pH梯度溶液中的药物释放速率并验证了其生物安全性。随后,我们研究了CS@MSNs-柚皮苷对骨髓源性巨噬细胞诱导的破骨细胞的影响,在探索潜在机制的同时,重点关注分化和骨吸收活性。最后,我们建立了大鼠双侧临界大小的颅骨缺损模型,其中CS@MSNs-柚皮苷分散在GelMA水凝胶中以实现原位药物递送。我们观察到CS@MSNs-柚皮苷在体内促进骨再生和抑制破骨细胞活性的能力。
    CS@MSNs-柚皮苷表现出高的均匀性和分散性,低细胞毒性(浓度≤120μg/mL),和显著的pH敏感性。体外,与Naringin和MSNs-Naringin相比,CS@MSNs-柚皮苷更有效地抑制破骨细胞的形成和骨吸收活性。这种作用伴随着NF-κB和MAPK信号通路中关键因子的磷酸化减少,细胞凋亡水平增加,以及随后的破骨细胞特异性基因和蛋白质的产生减少。在体内,CS@MSNs-Naringin的表现优于Naringin和MSNs-Naringin,促进新骨形成,同时更大程度地抑制破骨细胞活性。
    我们的研究表明,CS@MSNs-Naringin在体外和体内表现出惊人的抗破骨细胞能力,而且促进颅骨缺损的骨再生。
    UNASSIGNED: It is well-established that osteoclast activity is significantly influenced by fluctuations in intracellular pH. Consequently, a pH-sensitive gated nano-drug delivery system represents a promising therapeutic approach to mitigate osteoclast overactivity. Our prior research indicated that naringin, a natural flavonoid, effectively mitigates osteoclast activity. However, naringin showed low oral availability and short half-life, which hinders its clinical application. We developed a drug delivery system wherein chitosan, as gatekeepers, coats mesoporous silica nanoparticles loaded with naringin (CS@MSNs-Naringin). However, the inhibitory effects of CS@MSNs-Naringin on osteoclasts and the underlying mechanisms remain unclear, warranting further research.
    UNASSIGNED: First, we synthesized CS@MSNs-Naringin and conducted a comprehensive characterization. We also measured drug release rates in a pH gradient solution and verified its biosafety. Subsequently, we investigated the impact of CS@MSNs-Naringin on osteoclasts induced by bone marrow-derived macrophages, focusing on differentiation and bone resorption activity while exploring potential mechanisms. Finally, we established a rat model of bilateral critical-sized calvarial bone defects, in which CS@MSNs-Naringin was dispersed in GelMA hydrogel to achieve in situ drug delivery. We observed the ability of CS@MSNs-Naringin to promote bone regeneration and inhibit osteoclast activity in vivo.
    UNASSIGNED: CS@MSNs-Naringin exhibited high uniformity and dispersity, low cytotoxicity (concentration≤120 μg/mL), and significant pH sensitivity. In vitro, compared to Naringin and MSNs-Naringin, CS@MSNs-Naringin more effectively inhibited the formation and bone resorption activity of osteoclasts. This effect was accompanied by decreased phosphorylation of key factors in the NF-κB and MAPK signaling pathways, increased apoptosis levels, and a subsequent reduction in the production of osteoclast-specific genes and proteins. In vivo, CS@MSNs-Naringin outperformed Naringin and MSNs-Naringin, promoting new bone formation while inhibiting osteoclast activity to a greater extent.
    UNASSIGNED: Our research suggested that CS@MSNs-Naringin exhibited the strikingly ability to anti-osteoclasts in vitro and in vivo, moreover promoted bone regeneration in the calvarial bone defect.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    水凝胶的应用由于其通用性而显著扩大,生物材料技术的高度可调特性和突破。在这次审查中,我们涵盖了水凝胶在治疗应用中的主要成就和潜力,主要集中在两个领域:新兴的基于细胞的疗法和有希望的非细胞治疗方式。在细胞治疗的背景下,我们讨论了水凝胶克服主流细胞疗法范式所面临的现有翻译挑战的能力,详细讨论了水凝胶在提高细胞治疗功效方面的优势和主要设计考虑因素,并列举了它们在不同疾病场景中应用的具体例子。然后我们探索水凝胶在药物输送中的潜力,物理干预疗法,和其他非细胞治疗领域(例如,生物粘合剂,人造组织,和生物传感器),强调他们的效用不仅仅是送货车辆。此外,我们补充了我们对水凝胶临床应用的最新进展和挑战的讨论,并概述了未来的研究方向,特别是在与先进生物制造技术的整合方面。这篇综述旨在对细胞疗法和非细胞疗法的水凝胶的设计和选择提出全面的看法和批判性见解。量身定制,以满足各种疾病和情况的治疗要求。
    The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    氧连素(OBB)是一种重要的天然化合物,具有优良的保肝性能。然而,OBB的水溶性差阻碍其释放和吸收,从而导致低生物利用度。为了克服OBB的这些缺点,配制OBB的无定形喷雾干燥粉末(ASDs)。解散,表征,研究了OBB-ASDs制剂的药代动力学,在D-GalN/LPS诱导的急性肝损伤(ALI)小鼠模型中,其保肝作用尚不清楚。OBB-ASD的表征表明OBB活性药物成分(API)的结晶形式在OBB-ASD中变成无定形形式。更重要的是,OBB-ASDs显示出比OBBAPI更高的生物利用度。此外,OBB-ASDs治疗恢复了异常的组织病理学变化,改善肝功能,减轻ALI小鼠肝脏炎症介质和氧化应激。喷雾干燥技术产生了无定形形式的OBB,能显著提高生物利用度,表现出优异的保肝作用,表明OBB-ASDs可以在保肝药物递送系统中表现出进一步的潜力。我们的研究结果为提高其他化合物的生物利用度和药理活性提供了指导。尤其是不溶性天然化合物。同时,OBB-ASDs的研制成功可以为难溶性药物的研究过程提供新的思路。
    Oxyberberine (OBB) is a significant natural compound, with excellent hepatoprotective properties. However, the poor water solubility of OBB hinders its release and absorption thus resulting in low bioavailability. To overcome these drawbacks of OBB, amorphous spray-dried powders (ASDs) of OBB were formulated. The dissolution, characterizations, and pharmacokinetics of OBB-ASDs formulation were investigated, and its hepatoprotective action was disquisitive in the D-GalN/LPS-induced acute liver injury (ALI) mouse model. The characterizations of OBB-ASDs indicated that the crystalline form of OBB active pharmaceutical ingredients (API) was changed into an amorphous form in OBB-ASDs. More importantly, OBB-ASDs showed a higher bioavailability than OBB API. In addition, OBB-ASDs treatment restored abnormal histopathological changes, improved liver functions, and relieved hepatic inflammatory mediators and oxidative stress in ALI mice. The spray drying techniques produced an amorphous form of OBB, which could significantly enhance the bioavailability and exhibit excellent hepatoprotective effects, indicating that the OBB-ASDs can exhibit further potential in hepatoprotective drug delivery systems. Our results provide guidance for improving the bioavailability and pharmacological activities of other compounds, especially insoluble natural compounds. Meanwhile, the successful development of OBB-ASDs could shed new light on the research process of poorly soluble medicine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    溃疡性结肠炎(UC)的口服药物通常受到诸如积累不足等挑战的阻碍,粘液屏障的有限渗透,以及减轻过度ROS和炎性细胞因子的复杂任务。这里,我们提出了一种针对UC的靶向治疗的策略,该策略涉及海藻酸钠微球(SAMs),其中包含M2巨噬细胞膜(M2M)包被的Janus纳米马达(命名为Motor@M2M).SAM提供保护屏障,确保Motor@M2M能够承受恶劣的胃环境,并表现出受控的释放。M2M增强纳米马达对炎性组织的靶向精度并且充当炎性细胞因子的中和的诱饵。MnO2在氧化微环境中催化分解H2O2会产生O2气泡,推动马达@M2M穿过粘液屏障进入发炎的结肠组织。口服后,运动@M2M@SAM显著改善UC严重程度,包括炎症缓解,ROS清除,巨噬细胞重编程,以及肠道屏障和微生物群的恢复。因此,我们的研究介绍了一种有前途的口服微球配方的巨噬细胞-仿生纳米机器人,为UC治疗提供了一种有希望的方法。
    Oral medication for ulcerative colitis (UC) is often hindered by challenges such as inadequate accumulation, limited penetration of mucus barriers, and the intricate task of mitigating excessive ROS and inflammatory cytokines. Here, we present a strategy involving sodium alginate microspheres (SAMs) incorporating M2 macrophage membrane (M2M)-coated Janus nanomotors (denominated as Motor@M2M) for targeted treatment of UC. SAM provides a protective barrier, ensuring that Motor@M2M withstands the harsh gastric milieu and exhibits controlled release. M2M enhances the targeting precision of nanomotors to inflammatory tissues and acts as a decoy for the neutralization of inflammatory cytokines. Catalytic decomposition of H2O2 by MnO2 in the oxidative microenvironment generates O2 bubbles, propelling Motor@M2M across the mucus barrier into inflamed colon tissues. Upon oral administration, Motor@M2M@SAM notably ameliorated UC severity, including inflammation mitigation, ROS scavenging, macrophage reprogramming, and restoration of the intestinal barrier and microbiota. Consequently, our investigation introduces a promising oral microsphere formulation of macrophage-biomimetic nanorobots, providing a promising approach for UC treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Near-infrared fluorescence imaging technology, which possesses superior advantages including real-time and fast imaging, high spatial and temporal resolution, and deep tissue penetration, shows great potential for tumor imaging in vivo and therapy. Ⅰ-Ⅲ-Ⅵ quantum dots exhibit high brightness, broad excitation, easily tunable emission wavelength and superior stability, and do not contain highly toxic heavy metal elements such as cadmium or lead. These advantages make Ⅰ-Ⅲ-Ⅵ quantum dots attract widespread attention in biomedical field. This review summarizes the recent advances in the controlled synthesis of Ⅰ-Ⅲ-Ⅵ quantum dots and their applications in tumor imaging in vivo and therapy. Firstly, the organic-phase and aqueous-phase synthesis of Ⅰ-Ⅲ-Ⅵ quantum dots as well as the strategies for regulating the near-infrared photoluminescence are briefly introduced; secondly, representative biomedical applications of near-infrared-emitting cadmium-free quantum dots including early diagnosis of tumor, lymphatic imaging, drug delivery, photothermal and photodynamic therapy are emphatically discussed; lastly, perspectives on the future directions of developing quantum dots for biomedical application and the faced challenges are discussed. This paper may provide guidance and reference for further research and clinical translation of cadmium-free quantum dots in tumor diagnosis and treatment.
    近红外荧光成像技术具有实时快速、高时空分辨率、深组织穿透等突出优势,在肿瘤在体成像和治疗方面显示出巨大应用潜力。Ⅰ-Ⅲ-Ⅵ族量子点具有高亮度、宽激发、易于调节的发射波长,还具有优越的稳定性且不含镉或铅等高毒性重金属元素,使其在生物医学应用领域受到广泛关注。本综述总结了近年来Ⅰ-Ⅲ-Ⅵ族近红外发光量子点的可控合成,及其在肿瘤在体成像治疗应用中的研究进展。首先,介绍了Ⅰ-Ⅲ-Ⅵ族量子点的有机相和水相合成方法,以及对近红外发光性能的调控策略;其次,重点探讨了近红外无镉量子点在生物医学领域的应用,包括肿瘤早期诊断、淋巴成像、药物递送、光热和光动力治疗等;最后,本文展望了未来量子点面向生物医学领域应用的发展方向和面临的挑战,或可为无镉量子点在肿瘤诊疗方面的进一步研究及临床转化提供指导和参考。.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号