DNA Packaging

DNA 包装
  • 文章类型: Journal Article
    线粒体转录因子A(TFAM)利用DNA弯曲将线粒体DNA(mtDNA)包装成类核苷酸,并在特定的启动子位点招募线粒体RNA聚合酶(POLRMT),轻链启动子(LSP)和重链启动子(HSP)。在这里,我们使用单分子荧光共振能量转移(smFRET)和单分子蛋白质诱导的荧光增强(smPIFE)方法表征了TFAM在启动子和非启动子序列上的构象动力学。DNA-TFAM复合物在部分和完全弯曲的DNA构象状态之间动态地转变。弯曲/不弯曲过渡速率和弯曲稳定性是DNA序列依赖性的-LSP形成最稳定的完全弯曲复合物,而非特异性序列最少,这与TFAM与这些DNA序列的寿命和亲和力相关。通过定量DNA-TFAM复合物的动态性质,我们的研究提供了有关TFAM如何通过DNA弯曲状态充当多功能蛋白质的见解,以在线粒体转录中实现序列特异性和保真度,同时进行mtDNA包装。
    Mitochondrial transcription factor A (TFAM) employs DNA bending to package mitochondrial DNA (mtDNA) into nucleoids and recruit mitochondrial RNA polymerase (POLRMT) at specific promoter sites, light strand promoter (LSP) and heavy strand promoter (HSP). Herein, we characterize the conformational dynamics of TFAM on promoter and non-promoter sequences using single-molecule fluorescence resonance energy transfer (smFRET) and single-molecule protein-induced fluorescence enhancement (smPIFE) methods. The DNA-TFAM complexes dynamically transition between partially and fully bent DNA conformational states. The bending/unbending transition rates and bending stability are DNA sequence-dependent-LSP forms the most stable fully bent complex and the non-specific sequence the least, which correlates with the lifetimes and affinities of TFAM with these DNA sequences. By quantifying the dynamic nature of the DNA-TFAM complexes, our study provides insights into how TFAM acts as a multifunctional protein through the DNA bending states to achieve sequence specificity and fidelity in mitochondrial transcription while performing mtDNA packaging.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肠沙门氏菌(沙门氏菌)及其噬菌体P22是通过广义转导研究水平基因转移的模型系统。通常,P22DNA包装机械启动包装时,短序列的DNA,被称为PAC网站,在P22基因组上被识别。然而,与宿主基因组中的pac位点相似的序列,称为伪pac网站,导致沙门氏菌DNA的错误包装和随后的广泛转导。虽然沙门氏菌假pac位点的一般基因组位置是已知的,序列本身尚未确定。我们使用映射到宿主沙门氏菌基因组的P22测序读数的可视化来定义广义转导起始区域和伪pac位点的可能位置。我们在每个基因组区域中搜索与P22pac位点具有最高相似性的序列,并比对所得序列。我们从比对中建立了正则表达式(序列匹配模式),并将其用于搜索两个P22易感沙门氏菌菌株LT2和14028S的基因组以进行序列匹配。最终的正则表达式成功地鉴定了LT2和14028S中的伪pac位点,其与映射的读段覆盖中的广义转导起始位点相对应。本研究中鉴定的伪pac位点序列可用于预测其他P22易感宿主中的广义转导位置,或通过基因工程在P22易感宿主的特定位置启动广义转导。此外,本研究中用于鉴定沙门氏菌假pac位点的生物信息学方法可应用于其他噬菌体宿主系统。
    Salmonella enterica Serovar Typhimurium (Salmonella) and its bacteriophage P22 are a model system for the study of horizontal gene transfer by generalized transduction. Typically, the P22 DNA packaging machinery initiates packaging when a short sequence of DNA, known as the pac site, is recognized on the P22 genome. However, sequences similar to the pac site in the host genome, called pseudo-pac sites, lead to erroneous packaging and subsequent generalized transduction of Salmonella DNA. While the general genomic locations of the Salmonella pseudo-pac sites are known, the sequences themselves have not been determined. We used visualization of P22 sequencing reads mapped to host Salmonella genomes to define regions of generalized transduction initiation and the likely locations of pseudo-pac sites. We searched each genome region for the sequence with the highest similarity to the P22 pac site and aligned the resulting sequences. We built a regular expression (sequence match pattern) from the alignment and used it to search the genomes of two P22-susceptible Salmonella strains-LT2 and 14028S-for sequence matches. The final regular expression successfully identified pseudo-pac sites in both LT2 and 14028S that correspond with generalized transduction initiation sites in mapped read coverages. The pseudo-pac site sequences identified in this study can be used to predict locations of generalized transduction in other P22-susceptible hosts or to initiate generalized transduction at specific locations in P22-susceptible hosts with genetic engineering. Furthermore, the bioinformatics approach used to identify the Salmonella pseudo-pac sites in this study could be applied to other phage-host systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尾噬菌体的门静脉蛋白在衣壳组装的各个方面发挥着重要作用,电机总成,基因组包装,连接器形成,和感染过程。DNA包装完成后,额外的蛋白质被组装到入口上形成连接体复合物,这是至关重要的,因为它桥接了成熟的头部和尾部。在这项研究中,我们报告了来自噬菌体λ的入口顶点的高分辨率低温电子显微镜(cryo-EM)结构在其前头和成熟病毒体状态下。这些结构的比较表明,在头部成熟期间,除了衣壳扩张,门静脉蛋白经历构象变化以建立与连接体蛋白的相互作用。此外,独立组装的尾巴在其近端经历形态改变,促进其与头尾连接蛋白的连接,并形成稳定的门户-连接器-尾巴复合物。B-DNA分子螺旋滑过试管,与中环连接蛋白的喷嘴叶片区域相互作用。这些见解阐明了噬菌体λ系统中门户成熟和DNA易位的机制。
    目的:尾噬菌体具有独特的门户顶点,由与5倍衣壳壳相关的12个门户蛋白环组成。这种门静脉蛋白在病毒组装和感染的多个阶段中至关重要。我们的研究重点是检查入口顶点在其初步前端状态和噬菌体λ的完全成熟的病毒体状态下的结构。通过分析这些结构,我们能够理解门静脉蛋白在成熟过程中如何经历构象变化,它阻止DNA逃逸的机制,和DNA螺旋滑动的过程。
    The portal protein of tailed bacteriophage plays essential roles in various aspects of capsid assembly, motor assembly, genome packaging, connector formation, and infection processes. After DNA packaging is complete, additional proteins are assembled onto the portal to form the connector complex, which is crucial as it bridges the mature head and tail. In this study, we report high-resolution cryo-electron microscopy (cryo-EM) structures of the portal vertex from bacteriophage lambda in both its prohead and mature virion states. Comparison of these structures shows that during head maturation, in addition to capsid expansion, the portal protein undergoes conformational changes to establish interactions with the connector proteins. Additionally, the independently assembled tail undergoes morphological alterations at its proximal end, facilitating its connection to the head-tail joining protein and resulting in the formation of a stable portal-connector-tail complex. The B-DNA molecule spirally glides through the tube, interacting with the nozzle blade region of the middle-ring connector protein. These insights elucidate a mechanism for portal maturation and DNA translocation within the phage lambda system.
    OBJECTIVE: The tailed bacteriophages possess a distinct portal vertex that consists of a ring of 12 portal proteins associated with a 5-fold capsid shell. This portal protein is crucial in multiple stages of virus assembly and infection. Our research focused on examining the structures of the portal vertex in both its preliminary prohead state and the fully mature virion state of bacteriophage lambda. By analyzing these structures, we were able to understand how the portal protein undergoes conformational changes during maturation, the mechanism by which it prevents DNA from escaping, and the process of DNA spirally gliding.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人工生物分子缩合物正在成为一种在不需要脂质膜的情况下组织分子靶标和反应的通用方法。在这里,我们询问是否可以通过设计的化学反应来控制人工冷凝物的时间响应。我们通过考虑一个模型问题来解决这个普遍问题,在该模型中,相分离成分参与了动态激活或停用其自吸引能力的反应。通过理论模型,我们说明了反应的瞬态和平衡效应,连接缩合反应和反应参数。我们通过实验实现了我们的模型问题,使用被称为纳米星的星形DNA基序来产生凝聚物,我们利用链侵入和置换反应来动力学控制纳米星相互作用的能力。我们证明了在存在特定DNA输入的情况下,DNA缩合物的可逆溶解和生长,我们描述了立足点域的作用,纳米星尺寸,和纳米星价。我们的结果将支持人造生物分子缩合物的开发,该缩合物可以以规定的时间动力学适应环境变化。
    Artificial biomolecular condensates are emerging as a versatile approach to organize molecular targets and reactions without the need for lipid membranes. Here we ask whether the temporal response of artificial condensates can be controlled via designed chemical reactions. We address this general question by considering a model problem in which a phase separating component participates in reactions that dynamically activate or deactivate its ability to self-attract. Through a theoretical model we illustrate the transient and equilibrium effects of reactions, linking condensate response and reaction parameters. We experimentally realize our model problem using star-shaped DNA motifs known as nanostars to generate condensates, and we take advantage of strand invasion and displacement reactions to kinetically control the capacity of nanostars to interact. We demonstrate reversible dissolution and growth of DNA condensates in the presence of specific DNA inputs, and we characterize the role of toehold domains, nanostar size, and nanostar valency. Our results will support the development of artificial biomolecular condensates that can adapt to environmental changes with prescribed temporal dynamics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在所有尾噬菌体中,通过末端酶马达复合物将双链基因组包装到头部是病毒体形成的重要步骤。尽管进行了广泛的研究,在理解这种高度动态的过程和负责DNA易位的机制方面仍然存在很大的差距.在过去的十五年里,单分子荧光技术已应用于研究病毒核酸包装,使用强大而灵活的T4体外包装系统与遗传,生物化学,和结构分析。在这次审查中,我们讨论这些研究的新发现,包括通过在门户结构上方的染料标记的DNA末端的共定位,确定T4基因组被包装为细长的环。TerL电机的封装效率被证明与基板结构固有地联系在一起,包装在DNA分支上停滞。后者导致了多个实验的设计,其结果均支持提出的扭转压缩移位模型来解释衬底封装。底物压缩的证据来自相对于电机组件的停滞与分解酶释放的染料标记的Y-DNA和其他染料标记的底物的FRET和/或smFRET测量。此外,活性体内T4TerS荧光融合蛋白促进了先进的超分辨率光学显微镜对包装启动可视化的应用。形成孪生的TerS环配合物,每个直径预计为~15纳米,支持用于控制包装起始的双蛋白质环-DNA突触模型,该模型可能有助于解释在pac位点噬菌体中报告的各种环结构。在这些研究中,在单分子水平上对T4包装马达的动力学的检查证明了最先进的荧光工具对于复杂病毒复制机制的未来研究的价值。
    In all tailed phages, the packaging of the double-stranded genome into the head by a terminase motor complex is an essential step in virion formation. Despite extensive research, there are still major gaps in the understanding of this highly dynamic process and the mechanisms responsible for DNA translocation. Over the last fifteen years, single-molecule fluorescence technologies have been applied to study viral nucleic acid packaging using the robust and flexible T4 in vitro packaging system in conjunction with genetic, biochemical, and structural analyses. In this review, we discuss the novel findings from these studies, including that the T4 genome was determined to be packaged as an elongated loop via the colocalization of dye-labeled DNA termini above the portal structure. Packaging efficiency of the TerL motor was shown to be inherently linked to substrate structure, with packaging stalling at DNA branches. The latter led to the design of multiple experiments whose results all support a proposed torsional compression translocation model to explain substrate packaging. Evidence of substrate compression was derived from FRET and/or smFRET measurements of stalled versus resolvase released dye-labeled Y-DNAs and other dye-labeled substrates relative to motor components. Additionally, active in vivo T4 TerS fluorescent fusion proteins facilitated the application of advanced super-resolution optical microscopy toward the visualization of the initiation of packaging. The formation of twin TerS ring complexes, each expected to be ~15 nm in diameter, supports a double protein ring-DNA synapsis model for the control of packaging initiation, a model that may help explain the variety of ring structures reported among pac site phages. The examination of the dynamics of the T4 packaging motor at the single-molecule level in these studies demonstrates the value of state-of-the-art fluorescent tools for future studies of complex viral replication mechanisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    金黄色葡萄球菌是一种重要的人类病原菌,抗生素耐药性的流行是一个主要的公共卫生问题。金黄色葡萄球菌中致病性和抗性的进化通常涉及可移动遗传元件(MGE)的获得。噬菌体发挥着特别重要的作用,因为转导代表了水平基因转移的主要机制。金黄色葡萄球菌致病性岛(SaPIs),包括SaPI1,是携带编码毒力因子的基因的MGE,并通过与特定的“辅助”噬菌体相互作用以高频率动员,例如80α,导致将SaPI基因组包装到由助手提供的结构蛋白制成的病毒体中。这些结构蛋白是门静脉蛋白,在衣壳的五倍顶点处形成一个环状入口,DNA在病毒体组装过程中被包装,并在感染宿主时被排出。我们已经使用高分辨率低温电子显微镜来确定金黄色葡萄球菌噬菌体80α门静脉本身的结构,由过度表达产生,在空而满的SaPI1病毒体中,并显示门户如何与衣壳交互。这些结构为理解门户和衣壳组装以及在DNA包装和排出时发生的构象变化提供了基础。
    Staphylococcus aureus is an important human pathogen, and the prevalence of antibiotic resistance is a major public health concern. The evolution of pathogenicity and resistance in S. aureus often involves acquisition of mobile genetic elements (MGEs). Bacteriophages play an especially important role, since transduction represents the main mechanism for horizontal gene transfer. S. aureus pathogenicity islands (SaPIs), including SaPI1, are MGEs that carry genes encoding virulence factors, and are mobilized at high frequency through interactions with specific \"helper\" bacteriophages, such as 80α, leading to packaging of the SaPI genomes into virions made from structural proteins supplied by the helper. Among these structural proteins is the portal protein, which forms a ring-like portal at a fivefold vertex of the capsid, through which the DNA is packaged during virion assembly and ejected upon infection of the host. We have used high-resolution cryo-electron microscopy to determine structures of the S. aureus bacteriophage 80α portal itself, produced by overexpression, and in situ in the empty and full SaPI1 virions, and show how the portal interacts with the capsid. These structures provide a basis for understanding portal and capsid assembly and the conformational changes that occur upon DNA packaging and ejection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    大型dsDNA病毒将其DNA复制为由多个共价连接的基因组组成的多联体。基因组包装由末端酶催化,该酶从串联体中切除单个基因组并将其包装成预组装的原衣壳。这些不同的任务由在两种不同状态之间交替的终止酶催化-一种稳定的核酸酶,其切除单个基因组和一种动态马达,其将DNA易位到衣壳中。有人提出,噬菌体λ末端酶在包装起始位点组装为反平行的二聚体-二聚体核酸酶复合物。相比之下,所有具有特征的包装马达都由以平行方向与原衣壳结合的五个末端酶亚基组成。这里,我们描述了在溶液中组装的λ全酶复合物的生物物理和结构表征。分析超速离心,小角度X射线散射,和天然质谱表明5个亚基组装了一个锥形的末端酶复合物。冷冻EM图像的分类揭示了具有偏斜的五聚体对称性和一个特殊亚基的海星状环。我们提出了一个模型,其中两个亚基的核酸酶结构域在基因组成熟的二聚体头对头排列和基因组包装期间的完全平行排列之间交替。鉴于基因组包装在原核和真核病毒中都非常保守,结果具有广泛的生物学意义。
    The large dsDNA viruses replicate their DNA as concatemers consisting of multiple covalently linked genomes. Genome packaging is catalyzed by a terminase enzyme that excises individual genomes from concatemers and packages them into preassembled procapsids. These disparate tasks are catalyzed by terminase alternating between two distinct states-a stable nuclease that excises individual genomes and a dynamic motor that translocates DNA into the procapsid. It was proposed that bacteriophage λ terminase assembles as an anti-parallel dimer-of-dimers nuclease complex at the packaging initiation site. In contrast, all characterized packaging motors are composed of five terminase subunits bound to the procapsid in a parallel orientation. Here, we describe biophysical and structural characterization of the λ holoenzyme complex assembled in solution. Analytical ultracentrifugation, small angle X-ray scattering, and native mass spectrometry indicate that 5 subunits assemble a cone-shaped terminase complex. Classification of cryoEM images reveals starfish-like rings with skewed pentameric symmetry and one special subunit. We propose a model wherein nuclease domains of two subunits alternate between a dimeric head-to-head arrangement for genome maturation and a fully parallel arrangement during genome packaging. Given that genome packaging is strongly conserved in both prokaryotic and eukaryotic viruses, the results have broad biological implications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    分枝杆菌是主要的人类病原体,具有成为休眠持久性的能力。分枝杆菌DNA结合蛋白1(MDP1),休眠分枝杆菌中丰富的组蛋白样蛋白,诱导休眠表型,例如染色体压缩和生长抑制。对于这些功能,聚阳离子本质无序区(IDR)是必不可少的。然而,IDR的无序性质阻碍了分子机制的阐明。在这里,我们阐明了MDP1压缩DNA的分子和结构机制。使用高速原子力显微镜,我们观察到单体MDP1通过IDR并排捆绑两个相邻的DNA双链体。结合粗粒度分子动力学模拟,我们揭示了MDP1的新型动态DNA交联模型,其中拉伸的IDR交联了两个DNA双链体,例如双面胶带。IDR能够劫持HU功能,导致强烈的分枝杆菌生长停滞的诱导。这种IDR介导的可逆DNA交联是MDP1抑制可复苏的非复制休眠分枝杆菌基因组功能的合理模型。
    Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like protein in dormant mycobacteria, induces dormancy phenotypes, e.g. chromosome compaction and growth suppression. For these functions, the polycationic intrinsically disordered region (IDR) is essential. However, the disordered property of IDR stands in the way of clarifying the molecular mechanism. Here we clarified the molecular and structural mechanism of DNA compaction by MDP1. Using high-speed atomic force microscopy, we observed that monomeric MDP1 bundles two adjacent DNA duplexes side-by-side via IDR. Combined with coarse-grained molecular dynamics simulation, we revealed the novel dynamic DNA cross-linking model of MDP1 in which a stretched IDR cross-links two DNA duplexes like double-sided tape. IDR is able to hijack HU function, resulting in the induction of strong mycobacterial growth arrest. This IDR-mediated reversible DNA cross-linking is a reasonable model for MDP1 suppression of the genomic function in the resuscitable non-replicating dormant mycobacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    精子染色质中的鱼精蛋白替代组蛋白在动物中普遍存在,包括昆虫,但它的实际功能仍然是神秘的。我们表明,在果蝇父系效应突变体父系损失(pal)中,精子染色质保留了种系组蛋白H3和H4的基因组范围,而不损害精子的活力。然而,受精后,pal精子染色体被卵染色体乘客复合物靶向,并与雌性减数分裂II同步参与灾难性的过早分裂。我们表明,pal编码一种快速进化的过渡蛋白,该蛋白是在去除H2A-H2B二聚体后从精子细胞DNA中去除(H3-H4)2四聚体所必需的。因此,我们的研究揭示了组蛋白从昆虫精子染色质中驱逐的意外作用:在女性减数分裂过程中维护男性原核的完整性。
    The global replacement of histones with protamines in sperm chromatin is widespread in animals, including insects, but its actual function remains enigmatic. We show that in the Drosophila paternal effect mutant paternal loss (pal), sperm chromatin retains germline histones H3 and H4 genome wide without impairing sperm viability. However, after fertilization, pal sperm chromosomes are targeted by the egg chromosomal passenger complex and engage into a catastrophic premature division in synchrony with female meiosis II. We show that pal encodes a rapidly evolving transition protein specifically required for the eviction of (H3-H4)2 tetramers from spermatid DNA after the removal of H2A-H2B dimers. Our study thus reveals an unsuspected role of histone eviction from insect sperm chromatin: safeguarding the integrity of the male pronucleus during female meiosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    金黄色葡萄球菌是一种重要的人类病原菌,抗生素耐药性的流行是一个主要的公共卫生问题。金黄色葡萄球菌中致病性和抗性的进化通常涉及可移动遗传元件(MGE)的获得。噬菌体发挥着特别重要的作用,因为转导代表了水平基因转移的主要机制。金黄色葡萄球菌致病性岛(SaPIs),包括SaPI1,是携带编码毒力因子的基因的MGE,并通过与特定的“辅助”噬菌体相互作用以高频率动员,比如80α,导致将SaPI基因组包装到由助手提供的结构蛋白制成的病毒体中。这些结构蛋白是门静脉蛋白,在衣壳的五倍顶点处形成一个环状入口,DNA在病毒体组装过程中被包装,并在感染宿主时被排出。我们已经使用高分辨率的低温电子显微镜来确定金黄色葡萄球菌噬菌体80α门静脉在溶液中以及在空的和完整的SaPI1病毒体中的原位结构。并显示门户如何与衣壳交互。这些结构为理解门户和衣壳组装以及在DNA包装和排出时发生的构象变化提供了结构基础。
    Staphylococcus aureus is an important human pathogen, and the prevalence of antibiotic resistance is a major public health concern. The evolution of pathogenicity and resistance in S. aureus often involves acquisition of mobile genetic elements (MGEs). Bacteriophages play an especially important role, since transduction represents the main mechanism for horizontal gene transfer. S. aureus pathogenicity islands (SaPIs), including SaPI1, are MGEs that carry genes encoding virulence factors, and are mobilized at high frequency through interactions with specific \"helper\" bacteriophages, such as 80α, leading to packaging of the SaPI genomes into virions made from structural proteins supplied by the helper. Among these structural proteins is the portal protein, which forms a ring-like portal at a fivefold vertex of the capsid, through which the DNA is packaged during virion assembly and ejected upon infection of the host. We have used high-resolution cryo-electron microscopy to determine structures of the S. aureus bacteriophage 80α portal in solution and in situ in the empty and full SaPI1 virions, and show how the portal interacts with the capsid. These structures provide a basis for understanding portal and capsid assembly and the conformational changes that occur upon DNA packaging and ejection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号