Cell Membrane

细胞膜
  • 文章类型: Journal Article
    过氧化物酶体是执行多种代谢功能的多功能细胞器。PEX3,过氧化物酶体的关键调节剂,参与与过氧化物酶体相关的各种生物过程。PEX3是否参与过氧化物酶体相关的氧化还原稳态和心肌再生修复仍然难以捉摸。我们研究了心肌细胞特异性PEX3敲除(Pex3-KO)导致氧化还原稳态失衡,并破坏了不同时间和空间位置的内源性增殖/发育。使用Pex3-KO小鼠和心肌靶向干预方法,探讨了PEX3在生理和病理阶段对心肌再生修复的影响。机械上,脂质代谢组学显示PEX3通过影响缩醛磷脂代谢促进心肌再生修复。Further,我们发现PEX3调节的缩醛磷脂通过ITGB3的质膜定位激活AKT/GSK3β信号通路。我们的研究表明,PEX3可能是损伤后心肌再生修复的新治疗靶标。
    The peroxisome is a versatile organelle that performs diverse metabolic functions. PEX3, a critical regulator of the peroxisome, participates in various biological processes associated with the peroxisome. Whether PEX3 is involved in peroxisome-related redox homeostasis and myocardial regenerative repair remains elusive. We investigate that cardiomyocyte-specific PEX3 knockout (Pex3-KO) results in an imbalance of redox homeostasis and disrupts the endogenous proliferation/development at different times and spatial locations. Using Pex3-KO mice and myocardium-targeted intervention approaches, the effects of PEX3 on myocardial regenerative repair during both physiological and pathological stages are explored. Mechanistically, lipid metabolomics reveals that PEX3 promotes myocardial regenerative repair by affecting plasmalogen metabolism. Further, we find that PEX3-regulated plasmalogen activates the AKT/GSK3β signaling pathway via the plasma membrane localization of ITGB3. Our study indicates that PEX3 may represent a novel therapeutic target for myocardial regenerative repair following injury.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    根据单分子定位显微镜,几乎所有的质膜蛋白质都成簇。我们证明了簇可以起因于膜形貌的变化,其中随机分布的膜分子的局部密度在一定程度上与膜的局部量的变化相匹配。Further,我们证明,通过使用膜标记报告膜数量的局部变化,可以将这种错误的聚类与真正的聚类区分开来。在使用膜探针DiI以及转铁蛋白受体或GPI锚定蛋白CD59的双色活细胞单分子定位显微镜中,我们发现配对相关分析报告蛋白质和DiI均成簇,其衍生对相关-光活化定位显微镜和最近邻分析也是如此。在将定位转换为图像并使用DiI图像来分解地形变化之后,没有可见的CD59簇,这表明其他方法报告的聚类是一种假象。然而,在排除地形变化后,TfR簇仍然存在。我们证明了膜形貌的变化可以使膜分子看起来成簇,并提出了一种直接的补救措施,适合作为聚类分析流程的第一步。
    According to single-molecule localisation microscopy almost all plasma membrane proteins are clustered. We demonstrate that clusters can arise from variations in membrane topography where the local density of a randomly distributed membrane molecule to a degree matches the variations in the local amount of membrane. Further, we demonstrate that this false clustering can be differentiated from genuine clustering by using a membrane marker to report on local variations in the amount of membrane. In dual colour live cell single molecule localisation microscopy using the membrane probe DiI alongside either the transferrin receptor or the GPI-anchored protein CD59, we found that pair correlation analysis reported both proteins and DiI as being clustered, as did its derivative pair correlation-photoactivation localisation microscopy and nearest neighbour analyses. After converting the localisations into images and using the DiI image to factor out topography variations, no CD59 clusters were visible, suggesting that the clustering reported by the other methods is an artefact. However, the TfR clusters persisted after topography variations were factored out. We demonstrate that membrane topography variations can make membrane molecules appear clustered and present a straightforward remedy suitable as the first step in the cluster analysis pipeline.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    PRL1和PRL3,蛋白酪氨酸磷酸酶家族的成员,已与癌症转移和不良预后有关。尽管对它们的蛋白磷酸酶活性进行了广泛的研究,它们作为脂质磷酸酶的潜在作用仍然难以捉摸。方法:我们进行了全面的调查,以阐明PRL1和PRL3的脂质磷酸酶活性,使用细胞试验的组合,生化分析,和蛋白质相互作用组分析。进行了功能研究以描述PRL1/3对巨细胞增殖的影响及其在癌症生物学中的意义。结果:我们的研究已确定PRL1和PRL3为与磷酸肌醇(PIP)脂质相互作用的脂质磷酸酶,在细胞膜上将PI(3,4)P2和PI(3,5)P2转化为PI(3)P。PRL的这些酶活性促进膜皱褶的形成,膜起泡和随后的巨噬细胞增多,促进营养提取,细胞迁移,和入侵,从而促进肿瘤的发展。PRL的这些酶活性促进膜皱褶的形成,膜起泡和随后的巨噬细胞增多。此外,我们发现PRL1/3的表达与胶质瘤的发展之间存在相关性,提示他们参与了神经胶质瘤的进展。结论:结合已确定PRL参与mTOR的知识,EGFR与自噬,在这里,我们总结了PRL1/3在协调营养传感中的生理作用,通过其脂质磷酸酶活性调节巨细胞作用来吸收和再循环。这种机制可以被面临营养耗尽的微环境的肿瘤细胞利用,强调在癌症治疗中靶向PRL1/3介导的巨噬细胞增多症的潜在治疗意义。
    PRL1 and PRL3, members of the protein tyrosine phosphatase family, have been associated with cancer metastasis and poor prognosis. Despite extensive research on their protein phosphatase activity, their potential role as lipid phosphatases remains elusive. Methods: We conducted comprehensive investigations to elucidate the lipid phosphatase activity of PRL1 and PRL3 using a combination of cellular assays, biochemical analyses, and protein interactome profiling. Functional studies were performed to delineate the impact of PRL1/3 on macropinocytosis and its implications in cancer biology. Results: Our study has identified PRL1 and PRL3 as lipid phosphatases that interact with phosphoinositide (PIP) lipids, converting PI(3,4)P2 and PI(3,5)P2 into PI(3)P on the cellular membranes. These enzymatic activities of PRLs promote the formation of membrane ruffles, membrane blebbing and subsequent macropinocytosis, facilitating nutrient extraction, cell migration, and invasion, thereby contributing to tumor development. These enzymatic activities of PRLs promote the formation of membrane ruffles, membrane blebbing and subsequent macropinocytosis. Additionally, we found a correlation between PRL1/3 expression and glioma development, suggesting their involvement in glioma progression. Conclusions: Combining with the knowledge that PRLs have been identified to be involved in mTOR, EGFR and autophagy, here we concluded the physiological role of PRL1/3 in orchestrating the nutrient sensing, absorbing and recycling via regulating macropinocytosis through its lipid phosphatase activity. This mechanism could be exploited by tumor cells facing a nutrient-depleted microenvironment, highlighting the potential therapeutic significance of targeting PRL1/3-mediated macropinocytosis in cancer treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    受调节的细胞形状变化需要皮质细胞骨架结构域的诱导。通常,涉及质膜(PM)形貌的局部变化。中心体组织皮质域,并可以通过局部向内拉动PM来影响PM地形。这些中心体效应是耦合的吗?在合胞果蝇胚胎皮层,中心体诱导的肌动蛋白帽长成有丝分裂的圆顶状隔室。我们发现新生帽是在星体中心体MT阵列上形成的PM褶皱和小管的集合。局部折叠需要中心体和动力蛋白活动,和基于肌球蛋白的表面张力阻止他们在其他地方。中心体参与的PM折叠变得特别富含Arp2/3诱导途径。折叠之间的Arp2/3肌动蛋白网络生长抵消了中心体拉力,并分散了肌动蛋白帽扩张的折叠。具有中心体或Arp2/3破坏的异常结构域形貌与减少的外细胞囊泡关联相关。一起,我们的数据表明,中心体组织的PM折叠在协调Arp2/3网络生长和胞吐作用以进行皮质域组装中.
    Regulated cell shape change requires the induction of cortical cytoskeletal domains. Often, local changes to plasma membrane (PM) topography are involved. Centrosomes organize cortical domains and can affect PM topography by locally pulling the PM inward. Are these centrosome effects coupled? At the syncytial Drosophila embryo cortex, centrosome-induced actin caps grow into dome-like compartments for mitoses. We found the nascent cap to be a collection of PM folds and tubules formed over the astral centrosomal MT array. The localized infoldings require centrosome and dynein activities, and myosin-based surface tension prevents them elsewhere. Centrosome-engaged PM infoldings become specifically enriched with an Arp2/3 induction pathway. Arp2/3 actin network growth between the infoldings counterbalances centrosomal pulling forces and disperses the folds for actin cap expansion. Abnormal domain topography with either centrosome or Arp2/3 disruption correlates with decreased exocytic vesicle association. Together, our data implicate centrosome-organized PM infoldings in coordinating Arp2/3 network growth and exocytosis for cortical domain assembly.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    充当核苷酸糖转运蛋白的SLC35(溶质载体35)家族成员通常位于内质网或高尔基体中。是的,因此,有趣的是,一些报告记录在内体和溶酶体系统中存在孤儿转运蛋白SLC35F1和SLC35F6。这里,我们比较了这些蛋白质的亚细胞分布,发现它们集中在不同的区室中;即,SLC35F1的循环内体和SLC35F6的溶酶体。交换这些蛋白质的C末端尾部导致定位的转换,SLC35F1被运输到溶酶体,而SLC35F6保留在内体中。这表明在这些C末端区域中存在特定的分选信号。使用定点诱变,荧光显微镜,和细胞表面生物素化分析,我们发现位于人SLC35F6细胞质尾的EQERLL360信号参与其溶酶体分选(如先前在小鼠SLC35F6中显示的该保守序列),并且SLC35F1在再循环途径中的定位取决于两个YXXΦ型信号:Y367KQF序列促进其从质膜的内化,虽然Y392TSL基序阻止其运输到溶酶体,可能通过促进SLC35F1循环到细胞表面。一起来看,这些结果支持一些SLC35成员可能在内体和溶酶体系统的不同水平上发挥作用.
    The SLC35 (Solute Carrier 35) family members acting as nucleotide sugar transporters are typically localized in the endoplasmic reticulum or Golgi apparatus. It is, therefore, intriguing that some reports document the presence of orphan transporters SLC35F1 and SLC35F6 within the endosomal and lysosomal system. Here, we compared the subcellular distribution of these proteins and found that they are concentrated in separate compartments; i.e., recycling endosomes for SLC35F1 and lysosomes for SLC35F6. Swapping the C-terminal tail of these proteins resulted in a switch of localization, with SLC35F1 being trafficked to lysosomes while SLC35F6 remained in endosomes. This suggested the presence of specific sorting signals in these C-terminal regions. Using site-directed mutagenesis, fluorescence microscopy, and cell surface biotinylation assays, we found that the EQERLL360 signal located in the cytoplasmic tail of human SLC35F6 is involved in its lysosomal sorting (as previously shown for this conserved sequence in mouse SLC35F6), and that SLC35F1 localization in the recycling pathway depends on two YXXΦ-type signals: a Y367KQF sequence facilitates its internalization from the plasma membrane, while a Y392TSL motif prevents its transport to lysosomes, likely by promoting SLC35F1 recycling to the cell surface. Taken together, these results support that some SLC35 members may function at different levels of the endosomal and lysosomal system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    已知Aβ肽在导致富含Aβ的斑块沉积的过程中结合神经质膜。这些细胞外结构是阿尔茨海默病的特征,晚期痴呆的主要原因.Aβ菌斑形成和沉积的机制尚不清楚。文献中的大量研究描述了使用各种工具分析这些机制的努力。本综述侧重于主要使用模型膜或计算工具进行的生物物理研究。这篇综述首先描述了脂质相和常用模型膜(单层和双层)的基本物理方面。接下来是对应用于这些系统的生物物理技术的讨论,主要但不限于Langmuir单层,等温量热法,密度梯度超速离心,和分子动力学。方法部分之后是审查的核心,其中包括使用每种技术获得的重要结果的摘要。最后一部分致力于整体反思和理解Aβ-双层结合的努力。如Aβ肽膜结合的概念,吸附,和插入被定义和区分。膜脂序的作用,纳米域的形成,分别鉴定和讨论了Aβ膜相互作用中的静电力。
    Aβ peptides are known to bind neural plasma membranes in a process leading to the deposit of Aβ-enriched plaques. These extracellular structures are characteristic of Alzheimer\'s disease, the major cause of late-age dementia. The mechanisms of Aβ plaque formation and deposition are far from being understood. A vast number of studies in the literature describe the efforts to analyze those mechanisms using a variety of tools. The present review focuses on biophysical studies mostly carried out with model membranes or with computational tools. This review starts by describing basic physical aspects of lipid phases and commonly used model membranes (monolayers and bilayers). This is followed by a discussion of the biophysical techniques applied to these systems, mainly but not exclusively Langmuir monolayers, isothermal calorimetry, density-gradient ultracentrifugation, and molecular dynamics. The Methodological Section is followed by the core of the review, which includes a summary of important results obtained with each technique. The last section is devoted to an overall reflection and an effort to understand Aβ-bilayer binding. Concepts such as Aβ peptide membrane binding, adsorption, and insertion are defined and differentiated. The roles of membrane lipid order, nanodomain formation, and electrostatic forces in Aβ-membrane interaction are separately identified and discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    多重耐药金黄色葡萄球菌感染需要新型抗生素的开发。D-3263,一种瞬时受体电位美司他丁成员8(TRPM8)激动剂,具有潜在的抗肿瘤特性。这里,我们报道了D-3263的抗菌和抗生物膜活性。对金黄色葡萄球菌的最低抑制浓度(MIC),粪肠球菌和屎肠球菌≤50µM。D-3263在4×MIC时对临床耐甲氧西林金黄色葡萄球菌(MRSA)和粪肠球菌菌株表现出杀菌作用。亚抑制D-3263浓度有效抑制金黄色葡萄球菌和粪肠球菌生物膜,用较高的浓度也清除成熟的生物膜。蛋白质组学分析显示29种蛋白质在1/2×MICD-3263下的差异表达,影响氨基酸的生物合成和碳水化合物的代谢。此外,D-3263增强金黄色葡萄球菌和粪肠球菌的膜通透性。细菌膜磷脂磷脂磷脂酰乙醇胺(PE),磷脂酰甘油(PG),和心磷脂(CL)剂量依赖性增加D-3263MIC。总的来说,我们的数据表明,D-3263通过靶向细胞膜对金黄色葡萄球菌表现出有效的抗菌和抗生物膜活性.
    Multi-drug-resistant Staphylococcus aureus infections necessitate novel antibiotic development. D-3263, a transient receptor potential melastatin member 8 (TRPM8) agonist, has potential antineoplastic properties. Here, we reported the antibacterial and antibiofilm activities of D-3263. Minimum inhibitory concentrations (MICs) against S. aureus, Enterococcus faecalis and E. faecium were ≤ 50 µM. D-3263 exhibited bactericidal effects against clinical methicillin-resistant S. aureus (MRSA) and E. faecalis strains at 4× MIC. Subinhibitory D-3263 concentrations effectively inhibited S. aureus and E. faecalis biofilms, with higher concentrations also clearing mature biofilms. Proteomic analysis revealed differential expression of 29 proteins under 1/2 × MIC D-3263, influencing amino acid biosynthesis and carbohydrate metabolism. Additionally, D-3263 enhanced membrane permeability of S. aureus and E. faecalis. Bacterial membrane phospholipids phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL) dose-dependently increased D-3263 MICs. Overall, our data suggested that D-3263 exhibited potent antibacterial and antibiofilm activities against S. aureus by targeting the cell membrane.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们的研究旨在阐明金羧酸(ATA)抑制质膜Ca2-ATPase(PMCA)的机制,负责钙运输的关键酶。鉴于PMCA在细胞钙稳态中的关键作用,了解它是如何被ATA抑制的,对于潜在的调节该泵参与的生理病理细胞过程具有重要意义。我们的实验发现表明,ATA采用多种作用方式来抑制PMCA活性,受ATP的影响,也受钙和镁离子的影响。具体来说,镁似乎增强了这种抑制作用。我们的实验和计算机模拟结果表明,与其他蛋白质中报道的不同,与镁复合的ATA(ATA·Mg)是抑制PMCA的分子。总之,我们的研究提出了一个新的观点,并为未来旨在开发PMCA和其他蛋白质的新药理分子的研究工作奠定了坚实的基础。
    Our research aimed to elucidate the mechanism by which aurintricarboxylic acid (ATA) inhibits plasma membrane Ca2+-ATPase (PMCA), a crucial enzyme responsible for calcium transport. Given the pivotal role of PMCA in cellular calcium homeostasis, understanding how it is inhibited by ATA holds significant implications for potentially regulating physiopathological cellular processes in which this pump is involved. Our experimental findings revealed that ATA employs multiple modes of action to inhibit PMCA activity, which are influenced by ATP but also by the presence of calcium and magnesium ions. Specifically, magnesium appears to enhance this inhibitory effect. Our experimental and in-silico results suggest that, unlike those reported in other proteins, ATA complexed with magnesium (ATA·Mg) is the molecule that inhibits PMCA. In summary, our study presents a novel perspective and establishes a solid foundation for future research efforts aimed at the development of new pharmacological molecules both for PMCA and other proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞毒素(CT)是主要存在于眼镜蛇毒中的三指膜活性毒素。我们对可用的CT氨基酸序列的分析,有关其膜活性的文献数据,水溶液和洗涤剂胶束中的构象平衡使我们能够鉴定干扰CT掺入膜的特定氨基酸残基。它们包括N端Pro9,Ser28和Asn/Asp45,中央,和C端回路,分别。这些残基对膜活性的影响有一个层次:Pro9>Ser28>Asn/Asp45。考虑到特殊残留物的所有可能组合,我们建议将CT分成8组.组1包括含有所有上述残基的毒素。他们的代表表现出最低的膜活性。第8组组合了缺乏这些残基的CT。对于这个群体的毒素,观察到最大的膜活性。我们预测,当仅膜活性决定细胞毒性作用时,较高数量组的CTs活性应超过较低数量组的CTs活性.有关CT的细胞毒性和膜变性的可用数据支持了这种分类。我们假设CT分子环中的特殊氨基酸残基可能表明它们参与了与非脂质靶标的相互作用。
    Cytotoxins (CTs) are three-finger membrane-active toxins present mainly in cobra venom. Our analysis of the available CT amino acid sequences, literature data on their membrane activity, and conformational equilibria in aqueous solution and detergent micelles allowed us to identify specific amino acid residues which interfere with CT incorporation into membranes. They include Pro9, Ser28, and Asn/Asp45 within the N-terminal, central, and C-terminal loops, respectively. There is a hierarchy in the effect of these residues on membrane activity: Pro9 > Ser28 > Asn/Asp45. Taking into account all the possible combinations of special residues, we propose to divide CTs into eight groups. Group 1 includes toxins containing all of the above residues. Their representatives demonstrated the lowest membrane activity. Group 8 combines CTs that lack these residues. For the toxins from this group, the greatest membrane activity was observed. We predict that when solely membrane activity determines the cytotoxic effects, the activity of CTs from a group with a higher number should exceed that of CTs from a group with a lower number. This classification is supported by the available data on the cytotoxicity and membranotropic properties of CTs. We hypothesize that the special amino acid residues within the loops of the CT molecule may indicate their involvement in the interaction with non-lipid targets.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    发现α-Latrotoxin(α-LTX)在相对较低的浓度(0.1mg/mL)的溶液中形成二维(2D)单层阵列,毒素四聚体构成单位细胞。使用低温电子显微镜(cryoEM)对晶体进行成像,和图像分析得出了一个~12的投影图。在这个决议中,在α-LTX四聚体的结晶状态和溶液状态之间没有观察到主要的构象变化。电生理研究表明,在结晶条件下,α-LTX在生物膜中同时形成多个通道,显示出协调的门控。确定了电导水平为120和208pS的两种类型的通道。此外,我们观察到四聚体的两种不同的四聚体构象,当观察为单分散的单颗粒和在二维晶体,孔径为11和13.5,暗示四聚体中间有一个闪烁的孔,这可能对应于具有不同电导水平的毒素通道的两种状态。我们讨论了溶液中α-LTX四聚体发生的结构变化,并提出了α-LTX插入膜的机制。α-LTX四聚体形成2D晶体的倾向可以解释α-LTX毒理学的许多特征,并表明其他成孔毒素也可以形成通道阵列以发挥最大毒性作用。
    α-Latrotoxin (α-LTX) was found to form two-dimensional (2D) monolayer arrays in solution at relatively low concentrations (0.1 mg/mL), with the toxin tetramer constituting a unit cell. The crystals were imaged using cryogenic electron microscopy (cryoEM), and image analysis yielded a ~12 Å projection map. At this resolution, no major conformational changes between the crystalline and solution states of α-LTX tetramers were observed. Electrophysiological studies showed that, under the conditions of crystallization, α-LTX simultaneously formed multiple channels in biological membranes that displayed coordinated gating. Two types of channels with conductance levels of 120 and 208 pS were identified. Furthermore, we observed two distinct tetramer conformations of tetramers both when observed as monodisperse single particles and within the 2D crystals, with pore diameters of 11 and 13.5 Å, suggestive of a flickering pore in the middle of the tetramer, which may correspond to the two states of toxin channels with different conductance levels. We discuss the structural changes that occur in α-LTX tetramers in solution and propose a mechanism of α-LTX insertion into the membrane. The propensity of α-LTX tetramers to form 2D crystals may explain many features of α-LTX toxicology and suggest that other pore-forming toxins may also form arrays of channels to exert maximal toxic effect.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号