Apoptose

Apoptose
  • 文章类型: Journal Article
    与体内胚胎相比,体外生产(IVP)胚胎的质量降低且低温耐受性差。这项研究调查了游离脂肪酸(FFA)条件是否,无脂肪酸(FAF)-在前5个IVP天期间,不含或含25μM饱和硬脂酸(C18:0)或不饱和油酸(C18:1)的合成输卵管液(SOF),与第8天囊胚的质量和冷冻存活有关。除了胚泡评分,1)新鲜囊胚脂滴的数量和大小,2)总数和凋亡和坏死细胞,在冻融之前和之后,通过共聚焦显微镜进行评分。与其他组相比,FAFSOF条件下的囊胚率明显较低。有趣的是,来自C18:1组的胚泡,具有明显更高的脂质含量,FAFSOF组的囊胚表现出很高的冷冻存活率(70.1%和67.4%,分别)与体内胚泡(68%)相当,与C18:0暴露胚胎(17.6%)的冷冻存活率差相反。在所有冻融胚胎中,凋亡和坏死细胞的平均数量增加,尽管与C18:1(26.0%)和FAFSOF条件(26.5%)相比,C18:0条件的发生率更高(43.2%)。目前的数据显示,在早期胚胎发育期间施用的FFA显著影响胚泡的低温耐受性。
    In vitro production (IVP) embryos have a reduced quality and poor cryotolerance in comparison to in vivo embryos. This study investigated whether free fatty acid (FFA) conditions, fatty acid free (FAF)- synthetic oviduct fluid (SOF) without or with 25 μM of saturated stearic (C18:0) or unsaturated oleic (C18:1) acid during the first 5 IVP days, relate to quality and cryosurvival of day 8 blastocysts. Apart from the blastocyst scores, both 1) number and size of lipid droplets of fresh blastocysts and 2) total number and apoptotic and necrotic cells, before and after freezing-thawing, were scored by confocal microscopy. Blastocyst rates were significantly lower in the FAF SOF condition in comparison to other groups. Interestingly, blastocysts originating from the C18:1 group, with a significantly higher lipid content, and blastocysts from the FAF SOF group demonstrated a high cryosurvival rate (70.1 and 67.4%, respectively) comparable with in vivo blastocysts (68%), in contrast to the poor cryosurvival of C18:0 exposed embryos (17.6%). In all freeze-thawed embryos the average amount of apoptotic and necrotic cells increased albeit that the C18:0 condition rates were higher (43.2%) when compared to C18:1 (26.0%) and FAF SOF conditions (26.5%). The current data show that FFA administered during early embryonic development significantly affect the cryotolerance of blastocysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    糖尿病癌症患者接受阿霉素(DOX)治疗,一种诱导心脏毒性的有效化疗药物;然而,在患者和动物模型的这种特定疾病进展中,心脏毒性的分子机制是完全未知的。因此,我们设计了一项研究,以了解DOX诱导的糖尿病动物心脏毒性的影响和相关的病理生理机制。将C57BL/6J小鼠分为四个DOX和糖尿病(链脲佐菌素;STZ)治疗组;对照组,STZ,DOX,和DOX+STZ。在第14天,处死动物,超声心动图用于检查心脏功能,收集心脏和血液样本以研究凋亡机制(caspase3,BAX,B细胞白血病/淋巴瘤2(Bcl2),炎症,和心脏重塑。我们的数据显示葡萄糖水平显着增加(p<0.05),凋亡标志物,和单核细胞在凋亡部位的浸润和引发的炎症免疫反应(肿瘤坏死因子α(TNF-α)和白细胞介素6(IL-6)),在DOX+STZ动物中与对照组和实验组相比。我们还观察到肌原纤维面积显著(p<0.05)增加,纤维化,并且与对照相比,在DOX处理的糖尿病动物中显著降低(p<0.05)心脏功能。总之,我们的数据表明,DOX诱导显著增加的细胞凋亡,纤维化,与非糖尿病动物相比,糖尿病心脏的结构改变。
    Diabetic cancer patients were treated with doxorubicin (DOX), a potent chemotherapeutic drug that induces cardiac toxicity; however, molecular mechanisms of cardiac toxicity in this specific disease progression in patients and animal models are completely unknown. Therefore, we designed a study to understand the effects of DOX-induced cardiac toxicity in diabetic animals and the involved pathophysiological mechanisms. C57BL/6 J mice were divided into four DOX- and diabetic (streptozotocin; STZ) - treated groups; control, STZ, DOX, and DOX+STZ. At day 14, animals were sacrificed, echocardiography was used to examine heart function, and heart and blood samples were collected to investigate apoptotic mechanisms (caspase 3, BAX, B-Cell leukemia/lymphoma 2 (Bcl2)), inflammation, and cardiac remodeling. Our data shows a significant (p < 0.05) increase in glucose levels, apoptotic markers, and monocyte infiltration at the site of apoptosis and triggered inflammatory immune response (tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6)), in DOX+STZ animals compared with control and experimental groups. We also observed significant (p < 0.05) increase in myofibrillar area, fibrosis, and significantly decreased (p < 0.05) cardiac function in DOX-treated diabetic animals compared with controls. In conclusion, our data suggest that DOX induces significantly increased apoptosis, fibrosis, and structural alterations in diabetic hearts compared with non-diabetic animals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    OBJECTIVE: Dexmedetomidine is a highly selective alpha-2 adrenoceptor agonist that has sedative and analgesic properties and myocardial protective effects. However, the mechanism underlying the protective effect of dexmedetomidine on cardiomyocytes remains unknown. This study mainly aimed to investigate the effects of dexmedetomidine on the generation of reactive oxygen species (ROS) in cardiomyocytes and whether it inhibits the apoptosis of cardiomyocytes by affecting antioxidant enzyme expression.
    METHODS: Neonatal rat cardiomyocytes were pretreated with dexmedetomidine (100 nM) for 24 h. The cardiomyocytes were then incubated with 200 μM hydrogen peroxide solution (H2O2) for 4 h. PCR assay was used to determine the mRNA expression of antioxidant enzymes. Western blot assay was used to determine the protein expression of antioxidant enzymes. Fluorescence microscopy with the MitoSOX probe was used to detect the formation of ROS in cardiomyocytes, and fluorescence-activated cell sorting with annexin V/PI was used to determine the number of apoptotic cardiomyocytes.
    RESULTS: Dexmedetomidine reduced ROS generation and antioxidant enzymes levels in cardiomyocytes before H2O2 stimulation (p<0.05). However, ROS generation and apoptosis in cardiomyocytes were significantly increased after H2O2 treatment, and dexmedetomidine pretreatment markedly inhibited the changes (p<0.05).
    CONCLUSIONS: For the first time, to the best of our knowledge, our study shows that dexmedetomidine has a protective effect on cardiomyocytes through inhibition of ROS-induced apoptosis, and more importantly, this effect is independent of antioxidant enzyme mRNA and protein expression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Diabetes mellitus (DM) is a chronic metabolic disorder characterized by impaired glucose homeostasis, insulin resistance and hyperglycemia. Among its serious multisystemic complications is diabetic retinopathy (DR), which develops slowly and often insidiously. This disorder-the most common cause of vision loss in working-age adults-is characterized by functional and morphological changes in the retina. It results from the exacerbation of ischemic and inflammatory conditions prompted by alterations in the blood vessels, such as the development of leukostasis, thickening of the basement membrane, retinal neovascularization and fibrovascular tissue formation at the vitreoretinal interface. The pathogenic alterations are usually triggered at the biochemical level, involving a greater activity in 4 pathways: the polyol pathway, the hexosamine pathway, the formation of advanced glycation end-products and the activation of protein kinase C isoforms. When acting together, these pathways give rise to increased levels of reactive oxygen species and decreased levels of endogenous antioxidant agents, thus generating oxidative stress. All current therapies are aimed at the later stages of DR, and their application implies side effects. One possible strategy for preventing the complications of DM is to counteract the elevated superoxide production stemming from a high level of blood glucose. Accordingly, some treatments are under study for their capacity to reduce vascular leakage and avoid retinal ischemia, retinal neovascularization and macular edema. The present review summarizes the biochemical aspects of DR and the main approaches for treating it.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    OBJECTIVE: The purpose of the present study was to clarify the expression of ARID1A in polycystic ovary syndrome (PCOS) and its effect on ovarian granulosa cells (GCs).
    METHODS: Serum samples were collected from PCOS patients to detect the expression of ARID1A by qRT-PCR. Then, mouse and human ovarian GCs were isolated and divided into several groups according to difference in transfection, and the following experiments were performed: MTT assay, flow cytometry, qRT-PCR, radioimmunoassay, and Western blotting.
    RESULTS: ARID1A was down-regulated in the serum of PCOS patients and ovarian GCs from PCOS mice. Human and mouse ovarian GCs in the ARID1A group and in cells that were exposed to LY294002, a PI3/Akt pathway inhibitor, showed decreased proliferation and increased apoptosis compared to those in the mock group, and a higher percentage of G0/G1 phase with a lower percentage of S phase or G2/M. Moreover, the expression of steroid metabolism-related genes (3βHSD,Cyp11a1, StAR and Cyp19a1) in both human and mice PCOS GCs was down-regulatedresulting in lower estradiol (E2) and progesterone (P) 48h accumulation. In addition, protein expression of cleaved caspase-3, a main executor of apoptosis, was increased while expression of p-Akt/Akt and cyclin D1 was decreased in GCs from human and mice PCOS. However, the levels of the above indicators in the si-ARID1A group showed inverse changes. Furthermore, LY29400 treatment could reverse the effect of si-ARID1A on the ovarian GCs.
    CONCLUSIONS: ARID1A was down-regulated in GCs cells form PCOS women and from PCOS animal models, while ARID1A overexpression can suppress the PI3K/Akt pathway to inhibit proliferation and promote apoptosis in ovarian granulosa cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    OBJECTIVE: The mechanisms by which local anaesthetics cause neurotoxicity are very complicated. Apoptosis and autophagy are highly coordinated mechanisms that maintain cellular homeostasis against stress. Studies have shown that autophagy activation serves as a protective mechanism in vitro. However, whether it also plays the same role in vivo is unclear. The aim of this study was to explore the role of autophagy in local anaesthetic-induced neurotoxicity and to elucidate the mechanism of neurotoxicity in an intrathecally injected rat model.
    METHODS: Eighteen healthy adult male Sprague-Dawley rats were randomly divided into three groups. Before receiving an intrathecal injection of 1% bupivacaine, each rat received an intraperitoneal injection of vehicle or rapamycin (1 mg.kg-1) once a day for 3 days. The pathological changes were examined by Haematoxylin and Eosin (HE) staining. Apoptosis was analysed by TdT-mediated dUTP Nick-End Labelling (TUNEL) staining. Caspase-3, Beclin1 and LC3 expression was examined by Immunohistochemical (IHC) staining. Beclin1 and LC3 expression and the LC3-II/LC3-I ratio were detected by western blot analysis.
    RESULTS: After bupivacaine was injected intrathecally, pathological damage occurred in spinal cord neurons, and the levels of apoptosis and caspase-3 increased. Enhancement of autophagy with rapamycin markedly alleviated the pathological changes and decreased the levels of apoptosis and caspase-3 while increasing the expression of LC3 and Beclin1 and the ratio of LC3-II to LC3-I.
    CONCLUSIONS: Enhancement of autophagy decreases caspase-3-dependent apoptosis and improves neuronal survival in vivo. Activation of autophagy may be a potential therapeutic strategy for local anaesthetic-induced neurotoxicity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Auto-antibodies against apoA-1 (anti-apoA-1 IgGs) have been identified as important actors of atherosclerosis development through pro-inflammatory and pro-atherogenic properties and to also induce apoptosis in tumoral neuronal and lymphocyte derived cell lines through unknown mechanisms. The purpose of this study was to explore the cellular pathways involved in tumoral cell survival modulated by anti-apoA-1 antibodies. We observed that anti-apoA-1 antibodies induce growth arrest (in G2/M phase) and cell apoptosis through caspase 3 activation, accompanied by a selective p53 phosphorylation on serine 15. RNA sequencing indicated that anti-apoA-1 IgGs affect the expression of more than 950 genes belonging to five major groups of genes and respectively involved in i) cell proliferation inhibition, ii) p53 stabilisation and regulation, iii) apoptosis regulation, iv) inflammation regulation, and v) oxidative stress. In conclusion, anti-apoA-1 antibodies seem to have a role in blocking tumoral cell proliferation and survival, by activating a major tumor suppressor protein and by modulating the inflammatory and oxidative stress response. Further investigations are needed to explore a possible anti-cancer therapeutic approach of these antibodies in very specific and circumscribed conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Continuous cell death associated with inflammation is a key trigger of disease progression notably in chronic liver diseases such as non-alcoholic steatohepatitis (NASH). Apoptosis has been studied as a potential target for reducing cell death in NASH. However, recent studies suggest that caspase inhibition is inefficient to treat NASH patients and may aggravate the disease by redirecting cells to alternative mechanisms of cell death. Alternative forms of lytic cell death have recently been identified and are known to induce strong inflammatory responses due to cell membrane permeabilization. Therefore, controlling lytic cell death modes offers new opportunities for potential therapeutic intervention in NASH. This review summarizes the underlying molecular mechanisms of apoptosis and lytic cell death modes, including necroptosis, pyroptosis and ferroptosis, and discusses their relevance in NASH.
    UNASSIGNED: Les mécanismes de mort cellulaire dans la stéatohépatite non alcoolique.
    UNASSIGNED: La mort hépatocellulaire chronique et l’inflammation qui en résulte sont des évènements clés dans la progression de la stéatose hépatique non alcoolique (NAFL) vers la stéatohépatite non alcoolique (NASH). La NASH est un état sévère de la maladie qui est associé au développement de la fibrose et qui peut à terme évoluer vers la cirrhose et le cancer du foie. L’apoptose a initialement été étudiée comme cible potentielle pour réduire la mort des hépatocytes dans la NASH. Cependant, des études récentes suggèrent que l’inhibition des caspases est inefficace pour traiter les patients atteints de NASH et pourrait même aggraver la maladie en redirigeant les hépatocytes vers d’autres voies de mort cellulaire. De nouvelles formes de mort cellulaire dites lytiques ont récemment été identifiées et induisent de fortes réponses inflammatoires causées par la perméabilisation des membranes cellulaires. Le contrôle de ces voies de mort lytiques offre par conséquent de nouvelles opportunités thérapeutiques pour traiter la NASH. Cette revue résume les mécanismes moléculaires déclenchant l’apoptose et les voies de mort lytiques, parmi lesquelles la nécroptose, la pyroptose et la ferroptose, et discute de leur pertinence dans la NASH.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    本研究旨在评估褪黑素(单次剂量为50mg·kg-1)的心脏保护作用。一种天然存在的多药理学分子,在急性暴露于四氯化碳(CCl4)的Wistar大鼠中。这是第一次通过追踪反映大鼠心脏抗氧化和氧化能力的不同生化参数来完成,一氧化氮和精氨酸代谢,和谷胱甘肽循环。此外,研究了外源性凋亡通路相关参数。急性暴露于CCl4导致研究的组织氧化剂参数增加(过氧化氢,丙二醛,和羰基化蛋白质含量),以及抗氧化剂(过氧化氢酶,超氧化物歧化酶,和过氧化物酶)和谷胱甘肽代谢(谷胱甘肽过氧化物酶,S-转移酶,和还原酶)酶。此外,CCl4引起组织髓过氧化物酶的紊乱,一氧化氮,瓜氨酸,精氨酸酶,和诱导型一氧化氮合酶的含量和活性以及两个与凋亡相关的参数,caspase-3和FAS配体。褪黑素作为后处理在不同程度上阻止了CCl4诱导的变化,在某些情况下,它是如此有效,以至于完全消除了任何组织紊乱。这项研究是针对褪黑素治疗心脏组织相关疾病的进一步研究的有希望的起点。
    The present study was designed to evaluate the cardioprotective effects of melatonin (a single dose of 50 mg·kg-1), a naturally occurring polypharmacological molecule, in Wistar rats acutely exposed to carbon tetrachloride (CCl4). This was done for the first time by tracking different biochemical parameters that reflect rat heart antioxidative and oxidative capacities, nitric oxide and arginine metabolism, and the glutathione cycle. Additionally, the extrinsic apoptosis pathway related parameters were studied. Acute exposure to CCl4 led to an increase in the studied tissue oxidant parameters (hydrogen peroxide, malondialdehyde, and carbonylated protein content), as well as the activity alteration of antioxidant (catalase, superoxide dismutase, and peroxidase) and glutathione-metabolizing (glutathione peroxidase, S-transferase, and reductase) enzymes. Furthermore, CCl4 caused a disturbance in the tissue myeloperoxidase, nitric oxide, citrulline, arginase, and inducible nitric oxide synthase content and activities and in two apoptosis-related parameters, caspase-3 and FAS ligand. Melatonin as a post-treatment prevented the changes induced by CCl4 to a differing extent, and in some cases, it was so potent that it completely abolished any tissue disturbances. This study is a promising starting point for further research directed to the development of melatonin treatment in cardiac tissue associated diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Diabetes mellitus (DM) is a type of metabolic disorder characterized by long-term hyperglycemia. Accumulating evidence shows that long noncoding RNAs (lncRNAs) play significant roles in the occurrence and development of DM. This study intended to investigate the role of lncRNA plasmacytoma variant translocation 1 (PVT1) in rat insulinoma (INS-1) cells damaged by streptozotocin (STZ) and to identify the potential mechanisms. Firstly, PVT1 expression in INS-1 cells was assessed using RT-qPCR after STZ stimulation. After PVT1-knockdown, cell apoptosis, the contents of oxidative stress related markers, and changes in insulin secretion were detected. Results indicated that PVT1 was remarkably upregulated after STZ stimulation. PVT1-knockdown inhibited STZ-induced oxidative stress and apoptosis of INS-1 cells. Moreover, the insulin secretory capacity was notably elevated following PVT1 silencing. Subsequently, a luciferase reporter assay verified that miR-181a-5p was directly targeted by PVT1. The rescue assays revealed that miR-181a-5p inhibitor dramatically abrogated the effects of PVT1 silencing on oxidative stress, apoptosis, and insulin secretion. Taken together, these findings demonstrated that PVT1-knockdown could ameliorate STZ-induced oxidative stress and apoptosis and elevate insulin secretory capacity in pancreatic β cells by regulating miR-181a-5p, suggesting a promising biomarker in DM diagnosis and treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号