yellow

黄色
  • 文章类型: Journal Article
    蜜蜂,中华蜜蜂(Ac),是重要的传粉者,并以相关的颜色适应了当地的生态环境。在野生型个体中,棕色(br)突变体的角质层着色为棕色而不是黑色。因此,本研究旨在鉴定和表征负责br突变的基因。使用欧几里得距离进行等位基因分离测量的基因组重新测序,然后进行Lowess回归分析,发现与突变相关的颜色基因座位于11号染色体上。基因组组装和序列克隆后,在g7628(黄色)基因中鉴定出外显子4上的2个碱基缺失。此外,当使用短干扰RNA(siRNA)在黄色基因中诱导缺陷时,工蜂腹部的角质层颜色从黑色变为棕色;但是,生存率没有明显下降。这些结果表明,黄色基因参与了人体色素沉着,它的缺陷是br突变的原因。这项研究促进了对蜜蜂身体着色的分子基础的理解,丰富了昆虫色素沉着的分子机制。
    The honeybee, Apis cerana cerana (Ac), is an important pollinator and has adapted to the local ecological environment with relevant coloration. The cuticle coloration of the brown (br) mutant is brown instead of black in wild-type individuals. Therefore, this study aimed to identify and characterize the gene responsible for the br mutation. Genome resequencing with allele segregation measurement using Euclidean distance followed by Lowess regression analysis revealed that the color locus linked to the mutation was located on chromosome 11. A 2-base deletion on exon 4 was identified in the g7628 (yellow) gene after genome assembly and sequence cloning. In addition, the cuticle color of the abdomen of worker bees changed from black to brown when a defect was induced in the yellow gene using short interfering RNA (siRNA); however, the survival rate did not decrease significantly. These results indicate that the yellow gene participated in the body pigmentation, and its defect was responsible for the br mutation. This study promotes the understanding of the molecular basis of body coloration in honeybees, enriching the molecular mechanisms underlying insect pigmentation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The involvement of yellow genes y-b, y-c, y-e, and y-h in cuticle tanning has poorly been clarified. In the present paper, six putative yellow (y-y, y-b, y-c, y-e y-f, and y-h) genes were identified in Henosepilachna vigintioctopunctata. Hvy-b, Hvy-c, Hvy-e, and Hvy-h were abundantly transcribed at early larval and late pupal stages, especially in the epidermis. Accordingly, RNA interference (RNAi) experiments were performed by an injection of dsy-b, dsy-c, dsy-e, or dsy-h into the second instar larvae and 1-day-old pupae. The head capsule, scoli and strumae, and legs in the fourth-instar larvae became blacker; the blackish spots in the pupae were darkened and widened after RNAi of Hvy-b, compared with those of dsegfp-treated controls. Depletion of Hvy-b at the 1-day-old pupal stage expanded two pair of black markings on the sternum of the metathorax, and darkened the black patched on the sterna of the abdomen segments I-VI in the resultant adults. Depletion of Hvy-e caused darker pigmented adult body and elytral cuticles than those of dsegfp-introduced controls. However, there was no obvious difference in pigmentation of the black markings. Hvy-h-deficient larvae displayed dark yellow body color, whereas the body color of the dsegfp-injected control was pale yellow. There was no obvious difference in coloration of larval specific-black markings or pupal cuticle between dsHvy-h- and dsegfp-treated animals. Moreover, silence of Hvy-c at the second instar larval stage lightened black markings in the resulting larvae and pupae, but had no influence on pale yellow body color. Our results demonstrated their different roles of the four yellow genes during body pigmentation: HvY-b and HvY-c, respectively, inhibit and facilitate the coloration within dark markings, whereas HvY-e and HvY-h, respectively, repress the pigmentation in adult and larval body cuticles outside the black patches in H. vigintioctopunctata.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    For a devastating agricultural pest, functional genomics promotes the finding of novel technology to control Spodoptera frugiperda, such as the genetics-based strategies. In the present study, 11 yellow genes were identified in Spodoptera frugiperda. The transcriptome analysis showed the tissue-specific expression of part yellow genes, which suggested the importance of yellow genes in some biological processes in S. frugiperda, such as pigmentation. Among these yellow genes, the expression profiles of yellow-y gene showed that it was expressed in all life stages. In order to realize the further study of yellow-y, we employed CRISPR/Cas9 system to knock out this gene. Following knock out, diverse phenotypes were observed, such as color changes in both larvae and adults. Different from the wild-type larvae and adults, G0 mutants were yellowed since hatching. However, no color difference was observed with the pupal cuticle between the wild-type and mutant pupae before the 8th day. On the basis of the single-pair strategy of G0 generation, the yellow-y gene was proved to be a recessive gene. The G1 yellowish larvae with biallelic mutations displayed a relatively longer development period than wild-type, and often generated abnormal pupae and moths. The deletion of yellow-y also resulted in a decline in the fecundity. The results revealed that yellow-y gene was important for S. frugiperda pigmentation, as well as in its development and reproduction. Besides, the present study set up a standard procedure to knock out genes in S. frugiperda, which could be helpful for our understanding some key molecular processes, such as functional roles of detoxification genes as insecticide resistance mechanisms or modes of action of insecticides to facilitate the management of this insect pest.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    BACKGROUND: Yellow-feathered chickens (YFCs) have a long history in China. They are well-known for the nutritional and commercial importance attributable to their yellow color phenotype. Currently, there is a huge paucity in knowledge of the genetic determinants responsible for phenotypic and biochemical properties of these iconic chickens. This study aimed to uncover the genetic structure and the molecular underpinnings of the YFCs trademark coloration.
    RESULTS: The whole-genomes of 100 YFCs from 10 major traditional breeds and 10 Huaibei partridge chickens from China were re-sequenced. Comparative population genomics based on autosomal single nucleotide polymorphisms (SNPs) revealed three geographically based clusters among the YFCs. Compared to other Chinese indigenous chicken genomes incorporated from previous studies, a closer genetic proximity within YFC breeds than between YFC breeds and other chicken populations is evident. Through genome-wide scans for selective sweeps, we identified RALY heterogeneous nuclear ribonucleoprotein (RALY), leucine rich repeat containing G protein-coupled receptor 4 (LGR4), solute carrier family 23 member 2 (SLC23A2), and solute carrier family 2 member 14 (SLC2A14), besides the classical beta-carotene dioxygenase 2 (BCDO2), as major candidates pigment determining genes in the YFCs.
    CONCLUSIONS: We provide the first comprehensive genomic data of the YFCs. Our analyses show phylogeographical patterns among the YFCs and potential candidate genes giving rise to the yellow color trait of the YFCs. This study lays the foundation for further research on the genome-phenotype cross-talks that define important poultry traits and for formulating genetic breeding and conservation strategies for the YFCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Pigmentation plays a vital role in insect survival and reproduction. Many melanin pathway genes have been studied in holometabolous insects; however, they have only been studied in two hemimetabolous insect genera, Oncopeltus and Periplaneta. Here we analyzed three melanin pathway genes (TH, yellow, and aaNAT) using RNA interference (RNAi) in another hemimetabolous insect, namely the twin-spotted assassin bug, Platymeris biguttatus. TH was highly expressed in freshly molted nymphs and adults. TH RNAi resulted in a complete loss of black pigment, with yellow coloration maintained. Therefore, black pigment in this assassin bug is solely generated from the melanin pathway, whereas yellow pigment is generated from other unknown pigmentation pathways. yellow and aaNAT were highly expressed in the white spot of the hemelytra. Downregulation of yellow caused a brown phenotype with high mortality, indicating an important role of yellow functions in cuticle formation and in the process of converting melanin from brown to black. Interestingly, aaNAT RNAi caused not only loss of white pigment, but also loss of yellow and red pigments. This phenotype of aaNAT has not been reported in other insects. Our results provide new information for understanding the melanin pathway in which aaNAT is essential for the formation of colorless patterns.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号