nuclear pore complex

核孔络合物
  • 文章类型: Journal Article
    核孔复合物(NPC)是核质转运的唯一介质。尽管在理解其保守的核心架构方面取得了巨大的进步,外围区域可以在物种内部和物种之间表现出相当大的差异。一种这样的结构是笼状核篮。尽管它在mRNA监测和染色质组织中起着至关重要的作用,对建筑的理解仍然难以捉摸。使用细胞内低温电子层析成像和层析图分析,我们探索了NPC的结构变异和跨真菌(酵母;酿酒酵母)的核篮,哺乳动物(小鼠;Musculus),和原生动物(T.gondii)。使用综合结构建模,我们计算了酵母和哺乳动物中的篮子模型,该模型揭示了核环中的核孔蛋白(Nups)中心如何与形成篮子的Mlp/Tpr蛋白结合:Mlp/Tpr的卷曲螺旋结构域形成篮子的支柱,虽然它们的非结构化末端构成了篮子的远端密度,在核质转运之前,它可能充当mRNA预处理的对接位点。
    The nuclear pore complex (NPC) is the sole mediator of nucleocytoplasmic transport. Despite great advances in understanding its conserved core architecture, the peripheral regions can exhibit considerable variation within and between species. One such structure is the cage-like nuclear basket. Despite its crucial roles in mRNA surveillance and chromatin organization, an architectural understanding has remained elusive. Using in-cell cryo-electron tomography and subtomogram analysis, we explored the NPC\'s structural variations and the nuclear basket across fungi (yeast; S. cerevisiae), mammals (mouse; M. musculus), and protozoa (T. gondii). Using integrative structural modeling, we computed a model of the basket in yeast and mammals that revealed how a hub of nucleoporins (Nups) in the nuclear ring binds to basket-forming Mlp/Tpr proteins: the coiled-coil domains of Mlp/Tpr form the struts of the basket, while their unstructured termini constitute the basket distal densities, which potentially serve as a docking site for mRNA preprocessing before nucleocytoplasmic transport.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    环状RNA(circularRNAs)在神经发生期间上调。circRNAs在哪里以及如何定位,以及它们在此过程中扮演的角色仍然难以捉摸。比较H9细胞和H9衍生的前脑(FB)神经元之间的核和细胞质circRNAs,我们发现,富含腺苷(A)的circRNAs的一个子集被限制在H9细胞核中,但在分化后输出到细胞溶胶中。circRNAs的这种亚细胞重新定位由poly(A)结合蛋白PABPC1调节。在H9核中,新产生的富含(A)的circRNAs被PABPC1结合并被核篮蛋白TPR捕获以阻止它们的输出。调节circRNAs中富含(A)的基序改变了它们的亚细胞定位,并且在H9胞质中引入富含(A)的circRNAs导致mRNA翻译抑制。此外,神经元分化后减少的核PABPC1能够输出富含(A)的circRNAs,包括circRTN4(2,3),这是神经突生长所必需的。这些发现揭示了circRNAs的亚细胞定位特征,将它们在神经发生过程中的加工和功能联系起来。
    Circular RNAs (circRNAs) are upregulated during neurogenesis. Where and how circRNAs are localized and what roles they play during this process have remained elusive. Comparing the nuclear and cytoplasmic circRNAs between H9 cells and H9-derived forebrain (FB) neurons, we identify that a subset of adenosine (A)-rich circRNAs are restricted in H9 nuclei but exported to cytosols upon differentiation. Such a subcellular relocation of circRNAs is modulated by the poly(A)-binding protein PABPC1. In the H9 nucleus, newly produced (A)-rich circRNAs are bound by PABPC1 and trapped by the nuclear basket protein TPR to prevent their export. Modulating (A)-rich motifs in circRNAs alters their subcellular localization, and introducing (A)-rich circRNAs in H9 cytosols results in mRNA translation suppression. Moreover, decreased nuclear PABPC1 upon neuronal differentiation enables the export of (A)-rich circRNAs, including circRTN4(2,3), which is required for neurite outgrowth. These findings uncover subcellular localization features of circRNAs, linking their processing and function during neurogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大分子的核质转运在真核细胞中是必需的。在这个过程中,核动力蛋白在运输货物穿过核孔复合体时发挥着核心作用。Importin4属于核转运蛋白β家族。许多研究集中在寻找importin4的底物,但尚未报道其精确转运功能的直接机制研究。因此,本文主要研究核孔蛋白在转运蛋白4核进出口中的作用机制。为了解决这个问题,我们构建了靶向Nup358、Nup153、Nup98和Nup50的shRNA。我们发现Nup98的消耗导致输入蛋白4的亚细胞定位从细胞质转移到细胞核。突变分析表明,Nup98通过其N端苯丙氨酸-甘氨酸(FG)重复区与导入蛋白4在物理和功能上相互作用。这些FG基序中的9个突变为SG基序显着减弱了Nup98与导入蛋白4的结合,我们进一步证实了Nup98氨基酸121-360中的6个FG基序在与导入蛋白4结合中的重要作用。体外转运试验也证实了VDR,在Nup98敲低后,importin4的底物不能被转运到细胞核中。总的来说,我们的结果表明,Nup98是有效的导入蛋白4介导的转运所必需的。这是首次揭示importin4将底物运输到细胞核中的机制的研究。
    Nucleocytoplasmic transport of macromolecules is essential in eukaryotic cells. In this process, the karyopherins play a central role when they transport cargoes across the nuclear pore complex. Importin 4 belongs to the karyopherin β family. Many studies have focused on finding substrates for importin 4, but no direct mechanism studies of its precise transport function have been reported. Therefore, this paper mainly aimed to study the mechanism of nucleoporins in mediating nuclear import and export of importin 4. To address this question, we constructed shRNAs targeting Nup358, Nup153, Nup98, and Nup50. We found that depletion of Nup98 resulted in a shift in the subcellular localization of importin 4 from the cytoplasm to the nucleus. Mutational analysis demonstrated that Nup98 physically and functionally interacts with importin 4 through its N-terminal phenylalanine-glycine (FG) repeat region. Mutation of nine of these FG motifs to SG motifs significantly attenuated the binding of Nup98 to importin 4, and we further confirmed the essential role of the six FG motifs in amino acids 121-360 of Nup98 in binding with importin 4. In vitro transport assay also confirmed that VDR, the substrate of importin 4, could not be transported into the nucleus after Nup98 knockdown. Overall, our results showed that Nup98 is required for efficient importin 4-mediated transport. This is the first study to reveal the mechanism of importin 4 in transporting substrates into the nucleus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Preprint
    核孔复合物(NPC)是核-细胞质运输的唯一介质。尽管在理解其保守的核心架构方面取得了巨大的进步,外围区域可以在物种内部和物种之间表现出相当大的差异。一种这样的结构是笼状核篮。尽管它在mRNA监测和染色质组织中起着至关重要的作用,对建筑的理解仍然难以捉摸。使用细胞内低温电子层析成像和层析图分析,我们探索了NPC的结构变异和跨真菌(酵母;酿酒酵母)的核篮,哺乳动物(小鼠;Musculus),和原生动物(T.gondii)。使用综合结构建模,我们计算了酵母和哺乳动物中篮的模型,该模型揭示了核环中Nups的中心如何与形成篮的Mlp/Tpr蛋白结合:Mlp/Tpr的卷曲螺旋结构域形成篮的支柱,虽然它们的非结构化末端构成了篮子的远端密度,在核质转运之前,它可能充当mRNA预处理的对接位点。
    The nuclear pore complex (NPC) is the sole mediator of nucleocytoplasmic transport. Despite great advances in understanding its conserved core architecture, the peripheral regions can exhibit considerable variation within and between species. One such structure is the cage-like nuclear basket. Despite its crucial roles in mRNA surveillance and chromatin organization, an architectural understanding has remained elusive. Using in-cell cryo-electron tomography and subtomogram analysis, we explored the NPC\'s structural variations and the nuclear basket across fungi (yeast; S. cerevisiae), mammals (mouse; M. musculus), and protozoa (T. gondii). Using integrative structural modeling, we computed a model of the basket in yeast and mammals that revealed how a hub of Nups in the nuclear ring binds to basket-forming Mlp/Tpr proteins: the coiled-coil domains of Mlp/Tpr form the struts of the basket, while their unstructured termini constitute the basket distal densities, which potentially serve as a docking site for mRNA preprocessing before nucleocytoplasmic transport.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    核孔蛋白(Nups)的突变或失调与神经发育疾病密切相关,然而,潜在的机制仍然知之甚少。这里,我们表明,radial神经胶质祖细胞中NupSeh1的耗竭导致神经祖细胞的增殖和分化缺陷,最终表现为神经发生受损和小头畸形。干细胞增殖的这种丧失与核质转运缺陷无关。相反,转录组分析表明,神经干细胞中Seh1的消融抑制了p21的表达,而p21的敲除部分恢复了自我更新能力。机械上,Seh1与核外围的NuRD转录抑制复合物合作以调节p21表达。一起,这些发现确定Nups通过发挥染色质相关作用并影响神经干细胞增殖来调节大脑发育。
    Mutations or dysregulation of nucleoporins (Nups) are strongly associated with neural developmental diseases, yet the underlying mechanisms remain poorly understood. Here, we show that depletion of Nup Seh1 in radial glial progenitors results in defective neural progenitor proliferation and differentiation that ultimately manifests in impaired neurogenesis and microcephaly. This loss of stem cell proliferation is not associated with defects in the nucleocytoplasmic transport. Rather, transcriptome analysis showed that ablation of Seh1 in neural stem cells derepresses the expression of p21, and knockdown of p21 partially restored self-renewal capacity. Mechanistically, Seh1 cooperates with the NuRD transcription repressor complex at the nuclear periphery to regulate p21 expression. Together, these findings identified that Nups regulate brain development by exerting a chromatin-associated role and affecting neural stem cell proliferation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    核孔复合物(NPC)是复杂的细胞内结构,由大约30个核孔蛋白(NUP)组成,可调节真核细胞中细胞核和细胞质之间的物质运输。心脏是维持身体重要功能的重要器官,向所有器官和组织输送富含营养和能量的血液。近年来的研究表明,NPCs不仅在心肌细胞增殖、分化等正常心脏生理过程中发挥重要作用,而且在缺血、缺氧性心肌损伤等多种病理过程中发挥重要作用。由于它们的质量和复杂的性质,NPC的结构一直是科学界难以识别的。随着低温电子显微镜和先进采样技术的发展,研究人员在理解NPC的结构方面取得了重大进展。本综述旨在总结NPCs的结构方面及其在心脏生理和病理中的作用的最新研究。增加对NPC行动的复杂机制的理解,为心脏病的发病机制提供有价值的见解,并描述潜在的新治疗策略的发展。
    Nuclear pore complexes (NPCs) are intricate intracellular structures composed of approximately 30 nuclear pore proteins (NUPs) that regulate the transport of materials between the nucleus and cytoplasm in eukaryotic cells. The heart is a crucial organ for sustaining the vital functions of the body, pumping blood rich in nutrients and energy to all organs and tissues. Recent studies have shown that NPCs play pivotal roles not only in normal cardiac physiological processes such as myocardial cell proliferation and differentiation but also in various pathological processes such as ischemic and hypoxic myocardial injury. Due to their mass and complicated nature, the structures of NPCs have been challenging to identify by the scientific community. With the development of cryo-electron microscopy and advanced sampling techniques, researchers have made significant progress in understanding the structures of NPCs. This review aims to summarize the latest research on the structural aspects of NPCs and their roles in cardiac physiology and pathology, increase the understanding of the intricate mechanisms of NPC actions, provide valuable insights into the pathogenesis of heart diseases and describe the development of potential novel therapeutic strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    结论:生理和分子测试表明,NUP96在植物对盐胁迫的反应中起重要作用,来自转录组图谱的重新编程,这可能是由耐盐性关键调节剂对核/细胞质穿梭的影响介导的。作为核孔复合体(NPC)的关键组成部分,核孔蛋白96(NUP96)对于调节植物发育和与环境因素的相互作用至关重要,但是NUP96是否参与盐反应仍然未知。这里,我们分析了拟南芥NUP96在盐胁迫下的作用。功能丧失突变体nup96在玫瑰花结生长和根伸长方面表现出盐敏感性,并显示出减弱的维持离子和ROS稳态的能力,这可以通过NUP96的过表达来补偿。RNA测序显示,许多盐反应基因在NUP96突变后被错误调节,尤其是NUP96是大部分盐诱导基因表达所必需的。这可能与促进盐耐受性中潜在调节因子的核/胞质溶胶转运的活性有关,例如转录因子ATAP2,在盐胁迫下由nup96中的八个下调基因靶向。我们的结果表明,NUP96在盐反应中起重要作用,可能是通过调节与植物盐反应相关的关键mRNA或蛋白质的核质穿梭。
    CONCLUSIONS: Physiological and molecular tests show that NUP96 plays an important role in the plant response to salt stress, resulting from the reprogramming of transcriptomic profiles, which are likely to be mediated by the influence on the nuclear/cytosol shuttling of the key regulators of salt tolerance. As a key component of the nuclear pore complex (NPC), nucleoporin 96 (NUP96) is critical for modulating plant development and interactions with environmental factors, but whether NUP96 is involved in the salt response is still unknown. Here, we analyzed the role of Arabidopsis NUP96 under salt stress. The loss-of-function mutant nup96 exhibited salt sensitivity in terms of rosette growth and root elongation, and showed attenuated capacity in maintaining ion and ROS homeostasis, which could be compensated for by the overexpression of NUP96. RNA sequencing revealed that many salt-responsive genes were misregulated after NUP96 mutation, and especially NUP96 is required for the expression of a large portion of salt-induced genes. This is likely correlated with the activity in facilitating nuclear/cytosol transport of the underlying regulators in salt tolerance such as the transcription factor ATAP2, targeted by eight downregulated genes in nup96 under salt stress. Our results illustrate that NUP96 plays an important role in the salt response, probably by regulating the nucleocytoplasmic shuttling of key mRNAs or proteins associated with plant salt responsiveness.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    TP63等主要转录因子建立超级增强子(SE)来驱动癌细胞中的核心转录网络,然而,核内SEs的时空调控仍然未知。核孔复合物(NPC)可以将SE束缚到RNA输出速率最大的核孔。这里,我们报告NUP153,NPC的一个组成部分,将SE锚定到NPC并通过最大化mRNA输出来增强TP63表达。这种锚定是通过NUP153的内在无序区域(IDR)和共激活子BRD4之间的蛋白质-蛋白质相互作用介导的。NUP153的沉默将SEs排除在核外围,降低TP63表达,损害细胞生长,并诱导鳞状细胞癌的表皮分化。总的来说,这项工作揭示了NUP153IDRs在SE定位调控中的关键作用,从而在表观基因组和空间水平上提供了对新的基因调控层的见解。
    Master transcription factors such as TP63 establish super-enhancers (SEs) to drive core transcriptional networks in cancer cells, yet the spatiotemporal regulation of SEs within the nucleus remains unknown. The nuclear pore complex (NPC) may tether SEs to the nuclear pore where RNA export rates are maximal. Here, we report that NUP153, a component of the NPC, anchors SEs to the NPC and enhances TP63 expression by maximizing mRNA export. This anchoring is mediated through protein-protein interaction between the intrinsically disordered regions (IDRs) of NUP153 and the coactivator BRD4. Silencing of NUP153 excludes SEs from the nuclear periphery, decreases TP63 expression, impairs cellular growth, and induces epidermal differentiation of squamous cell carcinoma. Overall, this work reveals the critical roles of NUP153 IDRs in the regulation of SE localization, thus providing insights into a new layer of gene regulation at the epigenomic and spatial level.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    核孔复合物(NPC)由多个核孔(Nups)组成。大量研究强调了NPC在植物免疫中的重要性。然而,个人Nups的具体角色知之甚少。核孔隙锚(NUA)是NPC的组成部分。NUA的丢失导致拟南芥SUMO缀合物的增加和多效性发育缺陷。在这里,我们发现NUA是植物防御多种病原体所必需的。核孔隙锚定器与转录辅抑制因子无拓扑相关性1(TPR1)相关并有助于TPR1去去去去去去去去去去去去去去去。重要的是,短期第4天(ESD4)早期NUA相互作用蛋白,一种SUMO蛋白酶,特别是去硫酸酯TPR1。先前已确定SUMOE3连接酶SAP和MIZ1结构域连接酶1(SIZ1)介导的TPR1的SUMO化抑制TPR1的免疫相关功能。与这个概念一致,nua-3中的高SUMO化TPR1导致TPR1靶基因表达上调,并损害TPR1介导的抗病性.一起来看,我们的工作揭示了一种机制,通过该机制,NUA通过与ESD4协调以使TPR1脱盐来积极调节植物的防御反应。我们的发现,加上以前的研究,揭示了一个调节模块,其中SIZ1和NUA/ESD4控制TPR1去代谢的稳态以维持适当的免疫输出。
    Nuclear pore complex (NPC) is composed of multiple nucleoporins (Nups). A plethora of studies have highlighted the significance of NPC in plant immunity. However, the specific roles of individual Nups are poorly understood. NUCLEAR PORE ANCHOR (NUA) is a component of NPC. Loss of NUA leads to an increase in SUMO conjugates and pleiotropic developmental defects in Arabidopsis thaliana. Herein, we revealed that NUA is required for plant defense against multiple pathogens. NUCLEAR PORE ANCHOR associates with the transcriptional corepressor TOPLESS-RELATED1 (TPR1) and contributes to TPR1 deSUMOylation. Significantly, NUA-interacting protein EARLY IN SHORT DAYS 4 (ESD4), a SUMO protease, specifically deSUMOylates TPR1. It has been previously established that the SUMO E3 ligase SAP AND MIZ1 DOMAIN-CONTAINING LIGASE 1 (SIZ1)-mediated SUMOylation of TPR1 represses the immune-related function of TPR1. Consistent with this notion, the hyper-SUMOylated TPR1 in nua-3 leads to upregulated expression of TPR1 target genes and compromised TPR1-mediated disease resistance. Taken together, our work uncovers a mechanism by which NUA positively regulates plant defense responses by coordination with ESD4 to deSUMOylate TPR1. Our findings, together with previous studies, reveal a regulatory module in which SIZ1 and NUA/ESD4 control the homeostasis of TPR1 SUMOylation to maintain proper immune output.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    水稻(OryzasativaL.)是一种对冷敏感的物种,经常面临冷胁迫,这对产量生产率和质量产生不利影响。然而,水稻低温适应的遗传基础尚不清楚。这里,我们证明了水稻SEC13同源物1(OsSEH1)中的两个功能多态性,编码WD40重复核孔蛋白,在两个亚种水稻和水稻之间,可能促进了粳稻的冷适应。我们表明,粳稻品种的OsSEH1在OsSEH1MSD植物中表达(过表达来自芒水道[MSD]的OsSEH1等位基因的转基因品系,耐寒的地方白花)对金属硫蛋白2b(OsMT2b)的亲和力高于in的OsSEH1。OsSEH1MSD对OsMT2b的这种高亲和力导致OsMT2b降解的抑制,随着活性氧积累的减少和耐寒性的增加。转录组分析表明,OsSEH1正向调节编码脱水反应元件结合转录因子的基因的表达,即,OsDREB1基因,并诱导多个冷调节基因的表达以增强耐寒性。我们的发现强调了一种提高水稻耐寒性的育种资源。
    Rice (Oryza sativa L.) is a cold-sensitive species that often faces cold stress, which adversely affects yield productivity and quality. However, the genetic basis for low-temperature adaptation in rice remains unclear. Here, we demonstrate that 2 functional polymorphisms in O. sativa SEC13 Homolog 1 (OsSEH1), encoding a WD40-repeat nucleoporin, between the 2 subspecies O. sativa japonica and O. sativa indica rice, may have facilitated cold adaptation in japonica rice. We show that OsSEH1 of the japonica variety expressed in OsSEH1MSD plants (transgenic line overexpressing the OsSEH1 allele from Mangshuidao [MSD], cold-tolerant landrace) has a higher affinity for O. sativa metallothionein 2b (OsMT2b) than that of OsSEH1 of indica. This high affinity of OsSEH1MSD for OsMT2b results in inhibition of OsMT2b degradation, with decreased accumulation of reactive oxygen species and increased cold tolerance. Transcriptome analysis indicates that OsSEH1 positively regulates the expression of the genes encoding dehydration-responsive element-binding transcription factors, i.e. OsDREB1 genes, and induces the expression of multiple cold-regulated genes to enhance cold tolerance. Our findings highlight a breeding resource for improving cold tolerance in rice.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号