net zero emissions

净零排放
  • 文章类型: Journal Article
    二氧化碳去除(CDR)对于实现净零排放是必要的,研究表明,到2050年,潜在的部署将达到多吨二氧化碳的规模。然而,过度依赖未来的CDR会带来严重的风险,包括延迟减排,锁定化石基础设施,以及资源竞争加剧对可持续性的威胁。这项研究强调了一种替代途径-优先考虑近期非CDR缓解并最大程度地减少CDR依赖。到2050年,我们对全球新型CDR部署实施了1GtCO2的限制,迫使在较高CDR方案中大幅减少8-22GtCO2的排放。我们的结果表明,这种低CDR途径显着减少了化石燃料的使用,温室气体(GHG)排放,和空气污染物相比,较高的CDR途径。推动快速的能源转型缓解了土地(包括粮食田)的压力,水,能源和负排放所需的化肥资源。然而,这些可持续性收益伴随着更高的缓解成本,这些成本来自于更多的短期低碳/零碳技术部署脱碳。总的来说,这项工作为最大化可再生能源等非CDR战略提供了强有力的证据,电气化,碳中性/负燃料,现在和效率,而不是押注不确定的未来CDR扩展。在这十年中,雄心勃勃的近期缓解措施对于防止锁定并提供成功深度脱碳的最佳机会至关重要。我们受限的CDR方案为实现净零排放提供了一条稳健的途径,同时对可持续性影响有限。
    Carbon dioxide removal (CDR) is necessary for reaching net zero emissions, with studies showing potential deployment at multi-GtCO2 scale by 2050. However, excessive reliance on future CDR entails serious risks, including delayed emissions cuts, lock-in of fossil infrastructure, and threats to sustainability from increased resource competition. This study highlights an alternative pathway─prioritizing near-term non-CDR mitigation and minimizing CDR dependence. We impose a 1 GtCO2 limit on global novel CDR deployment by 2050, forcing aggressive early emissions reductions compared to 8-22 GtCO2 in higher CDR scenarios. Our results reveal that this low CDR pathway significantly decreases fossil fuel use, greenhouse gas (GHG) emissions, and air pollutants compared to higher CDR pathways. Driving rapid energy transitions eases pressures on land (including food cropland), water, and fertilizer resources required for energy and negative emissions. However, these sustainability gains come with higher mitigation costs from greater near-term low/zero-carbon technology deployment for decarbonization. Overall, this work provides strong evidence for maximizing non-CDR strategies such as renewables, electrification, carbon neutral/negative fuels, and efficiency now rather than betting on uncertain future CDR scaling. Ambitious near-term mitigation in this decade is essential to prevent lock-in and offer the best chance of successful deep decarbonization. Our constrained CDR scenario offers a robust pathway to achieving net zero emissions with limited sustainability impacts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    清洁能源和金融部门的发展被强调为应对气候变化和实现净零排放目标的关键因素。因此,使用1990年至2019年前20个排放国的数据集,这项研究检查了清洁能源消费,金融发展,人力资本,人口,通过减少碳排放,经济增长与环境质量有关。长期估计表明,可再生能源的利用,金融发展,和人力资本在寻求净零排放的过程中对减少二氧化碳排放具有重要意义。相反,经济增长和人口增加二氧化碳排放量。因果关系检验的结果表明,可再生能源使用之间存在双向因果关系,金融发展,经济增长,人口,和二氧化碳排放。此外,观察到从二氧化碳排放到人力资本的单向因果关系的发生率。根据调查结果,提出了政策含义。
    The development of clean energy and financial sectors have been highlighted as critical factors in tackling climate change and achieving net zero emissions goals. Hence, using a dataset for the top 20 emitter countries from 1990 to 2019, this study examines whether clean energy consumption, financial development, human capital, population, and economic growth are connected with environmental quality through a reduction in carbon emissions. The long-run estimates show that renewable energy utilization, financial development, and human capital are significant in reducing CO2 emissions in the quest for net zero emissions. Contrarily, economic growth and population have a increases CO2 emissions. The results of the causality test show a two-way causality between renewable energy use, financial development, economic growth, population, and CO2 emissions. Moreover, one incidence of unidirectional causality is observed from CO2 emissions to human capital. Based on the findings, policy implications are suggested.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    能源安全问题需要新的更绿色和更可持续的过程,和《巴黎协定》的目标已经启动了几项与2050年路线图战略和净零排放目标相一致的措施。可再生能源是现有基础设施的有希望的替代品,太阳能是最吸引人的能源之一,因为它使用了过剩的自然能源。光催化作为一种简单的非均相表面催化反应,可以很好地进入大规模实施的放大过程领域。受自然光合作用的启发,人造水的美丽在于它的简单,只需要光,催化剂,和水。产生大量氢气的瓶颈有几个:具有高效光子/质量/热量分布的反应器,多功能高效太阳能驱动催化剂,以及先导装置的扩散。三个案例研究,开发于日本,西班牙,和法国展示了强调在试点和大规模例子上的努力。为了使太阳能辅助光催化H2成熟为解决方案,该领域必须克服上述瓶颈,以提高其技术准备水平,评估资本支出,进入市场。
    Energy security concerns require novel greener and more sustainable processes, and Paris Agreement goals have put in motion several measures aligned with the 2050 roadmap strategies and net zero emission goals. Renewable energies are a promising alternative to existing infrastructures, with solar energy one of the most appealing due to its use of the overabundant natural source of energy. Photocatalysis as a simple heterogeneous surface catalytic reaction is well placed to enter the realm of scaling up processes for wide scale implementation. Inspired by natural photosynthesis, artificial water splitting\'s beauty lies in its simplicity, requiring only light, a catalyst, and water. The bottlenecks to producing a high volume of hydrogen  are several: Reactors with efficient photonic/mass/heat profiles, multifunctional efficient solar-driven catalysts, and proliferation of pilot devices. Three case studies, developed in Japan, Spain, and France are showcased to emphasize efforts on a pilot and large-scale examples. In order for solar-assisted photocatalytic H2 to mature as a solution, the aforementioned bottlenecks must be overcome for the field to advance its technology readiness level, assess the capital expenditure, and enter the market.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生物炭,来自未使用的生物质,因其应对气候变化问题的潜力而被广泛认为。全球对生物炭的兴趣归因于其在土壤中固碳和从水污染中修复水生环境的能力。作为土壤改良剂和/或吸附剂,生物炭通过循环经济(CE)范式提供了机会。虽然能源转型仍在继续,低排放材料的进展加速了它们向净零排放的进程。然而,现有的工作都没有解决基于CE的生物炭管理来实现碳中和。为了反映它的新颖性,这项工作提供了生物炭促进CE和碳中和的挑战和机遇的关键概述。本文还提供了关于通过CE和资源回收范式加强生物质管理的开创性观点,同时探索未使用的生物质如何在其应用中促进净零排放。通过将文学中分散的知识整合到一个地方,这项工作揭示了新的研究方向,通过在各个领域实施生物质资源的循环来闭合循环。根据对113篇文章(2003-2023年)的文献调查得出的结论是,在联合国可持续发展目标(SDGs)的框架内,将生物质转化为生物炭可以促进净零排放和CE。根据它们的物理化学性质,生物炭可以成为CE的合适原料。生物炭作为土壤富集的应用每年抵消了土地使用的12%的二氧化碳排放量。向土壤中添加生物炭可以提高土壤的健康和农业生产力,同时减少约1/8的二氧化碳排放量。生物炭还可以长期隔离CO2,并防止碳分解后释放回大气中。这种做法每年可以隔离2.5千兆吨(Gt)的二氧化碳。到2028年,全球生物炭市场达到3.6885亿美元,这项工作促进了生物炭的多功能特性,以促进碳中和和CE应用。
    Biochar, derived from unused biomass, is widely considered for its potential to deal with climate change problems. Global interest in biochar is attributed to its ability to sequester carbon in soil and to remediate aquatic environment from water pollution. As soil conditioner and/or adsorbent, biochar offers opportunity through a circular economy (CE) paradigm. While energy transition continues, progress toward low-emissions materials accelerates their advance towards net-zero emissions. However, none of existing works addresses CE-based biochar management to achieve carbon neutrality. To reflect its novelty, this work provides a critical overview of challenges and opportunities for biochar to promote CE and carbon neutrality. This article also offers seminal perspectives about strengthening biomass management through CE and resource recovery paradigms, while exploring how the unused biomass can promote net zero emissions in its applications. By consolidating scattered knowledge in the body of literature into one place, this work uncovers new research directions to close the loops by implementing the circularity of biomass resources in various fields. It is conclusive from a literature survey of 113 articles (2003-2023) that biomass conversion into biochar can promote net zero emissions and CE in the framework of the UN Sustainable Development Goals (SDGs). Depending on their physico-chemical properties, biochar can become a suitable feedstock for CE. Biochar application as soil enrichment offsets 12% of CO2 emissions by land use annually. Adding biochar to soil can improve its health and agricultural productivity, while minimizing about 1/8 of CO2 emissions. Biochar can also sequester CO2 in the long-term and prevent the release of carbon back into the atmosphere after its decomposition. This practice could sequester 2.5 gigatons (Gt) of CO2 annually. With the global biochar market reaching USD 368.85 million by 2028, this work facilitates biochar with its versatile characteristics to promote carbon neutrality and CE applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    过量的二氧化碳(CO2)排放到大气中已经成为对人类和环境可持续性的严重威胁。净零排放的最终目标需要在二氧化碳封存(自然汇、生物量固定,工程方法)和减少二氧化碳排放,同时实现经济增长(循环碳生物经济的二氧化碳增值,CCE)。我们讨论了基于微藻的CO2生物固存,包括烟气培养,增强CO2生物固存的生物技术方法,微藻养殖技术创新,和二氧化碳增值/生物燃料生产。我们强调对当前实践和未来前景的挑战,以促进环境可持续性为目标,净零排放,以及CCE。
    Excessive carbon dioxide (CO2) emissions into the atmosphere have become a dire threat to the human race and environmental sustainability. The ultimate goal of net zero emissions requires combined efforts on CO2 sequestration (natural sinks, biomass fixation, engineered approaches) and reduction in CO2 emissions while delivering economic growth (CO2 valorization for a circular carbon bioeconomy, CCE). We discuss microalgae-based CO2 biosequestration, including flue gas cultivation, biotechnological approaches for enhanced CO2 biosequestration, technological innovations for microalgal cultivation, and CO2 valorization/biofuel productions. We highlight challenges to current practices and future perspectives with the goal of contributing to environmental sustainability, net zero emissions, and the CCE.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号