equilibrium constant

平衡常数
  • 文章类型: Journal Article
    硒修饰核苷是研究核酸的结构和功能及其蛋白质相互作用的有力工具。2-硒代嘧啶核苷的广泛应用目前受到已建立的合成路线的低产率的限制。在这里,我们描述了使用天然尿苷或胸苷作为糖供体在转糖基化反应中通过热稳定核苷磷酸化酶合成2-Se-尿苷和2-Se-胸苷衍生物的优化。在低氧条件下在60或80°C和pH9下进行反应,以改善2-Se-核碱基在水性介质中的溶解度和稳定性。要优化转换,研究了分析性转糖基反应中的反应平衡。2-Se-嘧啶的磷酸化平衡常数在5至10之间,因此与任何其他已知情况的平衡常数相差一个数量级。因此,目标核苷的热力学性质本质上是不利的,这使得它们的合成显著复杂化。需要十倍过量的糖供体来实现向靶核苷的40-48%转化。优化条件的放大以6-40%的分离产率提供了四个含Se的核苷,与既定的化学路线相比,这是有利的。
    Selenium-modified nucleosides are powerful tools to study the structure and function of nucleic acids and their protein interactions. The widespread application of 2-selenopyrimidine nucleosides is currently limited by low yields in established synthetic routes. Herein, we describe the optimization of the synthesis of 2-Se-uridine and 2-Se-thymidine derivatives by thermostable nucleoside phosphorylases in transglycosylation reactions using natural uridine or thymidine as sugar donors. Reactions were performed at 60 or 80 °C and at pH 9 under hypoxic conditions to improve the solubility and stability of the 2-Se-nucleobases in aqueous media. To optimize the conversion, the reaction equilibria in analytical transglycosylation reactions were studied. The equilibrium constants of phosphorolysis of the 2-Se-pyrimidines were between 5 and 10, and therefore differ by an order of magnitude from the equilibrium constants of any other known case. Hence, the thermodynamic properties of the target nucleosides are inherently unfavorable, and this complicates their synthesis significantly. A tenfold excess of sugar donor was needed to achieve 40-48 % conversion to the target nucleoside. Scale-up of the optimized conditions provided four Se-containing nucleosides in 6-40 % isolated yield, which compares favorably to established chemical routes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    To optimize the operating temperature and flow velocity of cooling water in a high voltage direct current (HVDC) thyristor valve cooling system, the erosion corrosion characteristics of aluminum electrodes in deionized water at various temperatures were studied. With increasing water temperature, the corrosion current of the aluminum electrode gradually increases and the charge transfer impedance gradually decreases, thus, the corrosion of aluminum tends to become serious. The aluminum electrode in 50 °C deionized water has the most negative corrosion potential (-0.930 V), the maximum corrosion current (1.115 × 10-6 A cm-2) and the minimum charge transfer impedance (8.828 × 10-6 Ω), thus, the aluminum corrosion at this temperature is the most serious. When the temperature of deionized water increases, the thermodynamic activity of the ions and dissolved oxygen in the deionized water increases, and the mass transfer process accelerates. Therefore, the electrochemical corrosion reaction of the aluminum surface will be accelerated. The corrosion products covering the aluminum electrode surface are mainly Al(OH)3. With increasing water temperature, the number of pits and grooves formed by corrosion on the aluminum surface increased. In this paper, the molar activation energy Ea and the equilibrium constant K of the aluminum corrosion reaction with various temperatures are calculated. This clarifies the effect of temperature on the aluminum corrosion reaction, which provides a basis for protecting aluminum from corrosion. The results of this study will contribute to research that is focused on the improvement of production techniques used for HVDC thyristor valve cooling systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The reversible combination of a ligand with specific sites on the surface of a receptor is one of the most important processes in biochemistry. A classic equation with a useful simple graphical method was introduced to obtain the equilibrium constant, Kd, and the maximum density of receptors, Bmax. The entire 125I-labeled ligand binding experiment includes three parts: the radiolabeling, cell saturation binding assays and the data analysis. The assay format described here is quick, simple, inexpensive, and effective, and provides a gold standard for the quantification of ligand-receptor interactions. Although the binding assays and quantitative analysis have not changed dramatically compared to the original methods, we integrate all the parts to calculate the parameters in one concise protocol and adjust many details according to our experience. In every step, several optional methods are provided to accommodate different experimental conditions. All these refinements make the whole protocol more understandable and user-friendly. In general, the experiment takes one person less than 8 h to complete, and the data analysis could be accomplished within 2 h.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Vascular endothelial growth factor (VEGF) is a key regulator of pathological angiogenesis and vascular permeability and overexpressed by most solid tumors. VEGF receptor-2 (VEGFR-2 or kinase-insert domain-containing receptor as it is called in human, KDR) is a specific receptor of VEGF with a high binding affinity. A solube recombinant extracellular domain 1-3 of human VEGFR-2 (rKDR1-3) was expressed in Escherichia coli (E. Coli) and purified from the bacterial periplasmic extracts by immobilized metal affinity chromatography and anion exchange chromatography to inhibit the VEGF-induced angiogenesis. A surface plasmon resonance (SPR) technology was adopted to analyze the affinity and kinetics constant between rKDR1-3 and VEGF165. Under the given experimental conditions, the association rate constant Ka was 1.06×10(5)M(-1) S(-1), the dissociation rate Kd was 6.09×10(-3) S(-1), the dissociation constant KD was 5.74×10(-8)M. The effect of rKDR1-3 on VEGF-induced endothelial cell proliferation was studied using MTT assay, scratch-wound healing assay and chorioallantoic membrane (CAM) assay. The results showed that rKDR1-3 could inhibit neovascularization and serve as a useful drug candidate in research, diagnostics and therapy of cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号