confinement

禁闭
  • 文章类型: Journal Article
    While lithium borohydride is one of the most promising hydrogen storage materials due to its ultrahigh hydrogen storage density, high thermodynamic stability, kinetic barriers, and poor reversibility, it is far from being used in practical applications. Herein, we prepare a cubic hollow carbon dodecahedron uniformly modified with a bimetallic CoNi alloy (CoNi/NC) for preserving the stable catalytic effect of CoNi alloys toward reversible hydrogen storage. It is theoretically confirmed that bimetallic CoNi alloys effectively weaken the B-H bonds of LiBH4 by extending their average length to 1.33, 0.09 and 0.04 Å longer than that of LiBH4 and LiBH4 under metallic Co, respectively. More importantly, the alloying of Co with Ni avoids the reattachment of H from LiBH4 to the Co surface, which prevents LiBH4 from dehydrogenation for the formation of H2 on the Co surface, thus resulting in an ultralow hydrogen desorption energy of 0.1, 1.85 and 0.52 eV lower than that of LiBH4 and LiBH4 under metallic Co. Therefore, the onset and peak hydrogen desorption temperatures decrease to 130 and 355 °C, respectively, 170 and 97 °C lower than that of bulk LiBH4. More importantly, a reversible H2 capacity of 9.4 wt % is achieved even after 10 cycles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞迁移是一个基本的、功能性的细胞过程,由不同细胞和细胞外基质(ECM)组成的复杂微环境的影响。最近的研究强调,除了来自微环境的生化线索,物理线索也可以极大地改变细胞行为。然而,由于微环境的复杂性,关于迁移细胞和周围微环境之间的物理相互作用如何指导细胞运动,人们知之甚少。这里,我们探索了体外3D微环境重建模型的各种示例,并描述了迁移细胞与相邻微环境之间的物理相互作用如何控制细胞行为。了解这种机械合作将为器官发育提供关键见解,再生,和肿瘤转移。
    Cell migration is a fundamental and functional cellular process, influenced by complex microenvironment consisting of different cells and extracellular matrix (ECM). Recent research has highlighted that, besides biochemical cues from the microenvironment, physical cues can also greatly alter cellular behavior. However, due to the complexity of the microenvironment, little is known about how the physical interactions between migrating cells and surrounding microenvironment instruct cell movement. Here, we explore various examples of 3D microenvironment reconstruction models in vitro and describe how the physical interplay between migrating cells and the neighboring microenvironment controls cell behavior. Understanding this mechanical cooperation will provide key insights into organ development, regeneration, and tumor metastasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    钠硒(Na-Se)电池是具有高能量密度的有前途的储能系统,安全性高,和低成本。然而,硒的巨大体积变化,聚硒化物的溶解穿梭,和低硒负荷需要解决。在这里,Cu纳米颗粒修饰的MXene纳米片复合材料(MXene/Cu)通过使用熔融盐蚀刻策略蚀刻Ti3AlC2来合成。Se负载的MXene/Cu(Se@MXene/Cu)电极即使具有〜74.3wt%的高Se负载,也可提供卓越的电化学性能,由于二维(2D)限制结构的协同作用和独特的MXene/Cu主体的催化作用。具体来说,获得的电极在0.2A/g时的可逆容量为587.3mAh/g,在50A/g的高倍率下,放电容量高达511.3mAh/g,并且即使在基于Se@MXene/Cu的质量的5000次循环之后仍保持471.9mAh/g的容量。具有如此优异的电化学动力学性能,这项研究强调了设计各种MXene基复合材料的重要性,这些复合材料具有2D约束结构和Cu催化中心的协同作用,对于开发高性能碱金属-硫属元素电池系统。
    Sodium-selenium (Na-Se) batteries are promising energy storage systems with high energy density, high safety, and low cost. However, the huge volume change of selenium, the dissolution shuttle of polyselenides, and low selenium loading need to be solved. Herein, Cu nanoparticles decorated MXene nanosheets composite (MXene/Cu) are synthesized by etching Ti3AlC2 using a molten salt etching strategy. The Se-loaded MXene/Cu (Se@MXene/Cu) electrode delivers superior electrochemical performance even with a high Se loading of ∼74.3 wt%, owing to the synergistic effect of the two-dimensional (2D) confined structure and catalytic role of the unique MXene/Cu host. Specifically, the obtained electrode provides a reversible capacity of 587.3 mAh/g at 0.2 A/g, a discharge capacity as high as 511.3 mAh/g at a high rate of 50 A/g, and still maintains a capacity of 471.9 mAh/g even after 5000 cycles based on the mass of Se@MXene/Cu. With such excellent electrochemical kinetic properties, this study highlights the importance of designing various MXene-based composites with synergistic effects of 2D confined structure and Cu catalytic center for the development of high-performance alkali metal-chalcogen battery systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在低雷诺活性流体中观察到湍流,表现出与经典惯性湍流相似的现象学,但性质不同。理解这种新型湍流对维度的依赖性是非平衡物理学中的一个基本挑战。从二维到三维实验测量了细菌湍流的实空间结构和动能谱。湍流显示了三个由两个临界限制高度隔开的状态,由于细菌长度的竞争,涡流的大小和限制高度。同时,动能谱在准2D和3D状态下显示出不同的通用标度定律,独立于细菌活动,长度,和禁闭高度,而缩放指数在临界高度周围分两步过渡。我们开发的水动力学模型很好地捕获了缩放行为,它采用图像系统来表示限制边界的效果。该研究提出了一个框架,用于研究维度对非平衡自组织系统的影响。
    Turbulent flows are observed in low-Reynolds active fluids, which display similar phenomenology to the classical inertial turbulence but are of a different nature. Understanding the dependence of this new type of turbulence on dimensionality is a fundamental challenge in non-equilibrium physics. Real-space structures and kinetic energy spectra of bacterial turbulence are experimentally measured from two to three dimensions. The turbulence shows three regimes separated by two critical confinement heights, resulting from the competition of bacterial length, vortex size and confinement height. Meanwhile, the kinetic energy spectra display distinct universal scaling laws in quasi-2D and 3D regimes, independent of bacterial activity, length, and confinement height, whereas scaling exponents transition in two steps around the critical heights. The scaling behaviors are well captured by the hydrodynamic model we develop, which employs image systems to represent the effects of confining boundaries. The study suggests a framework for investigating the effect of dimensionality on non-equilibrium self-organized systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在水相中具有室温磷光(RTP)的超分子组装(SA)的应用具有彻底改变许多领域的潜力。然而,从力的角度来看,使用具有晶体RTP的简单分子构建具有水相RTP的SA几乎不可能。原因在于从晶体到SA的转变涉及从高度稳定到更动态状态的结构转变,导致非辐射失活途径和无声RTP信号增加。这里,受益于层状双氢氧化物(LDH)的约束,各种简单分子(苯衍生物)可以成功地与水相RTP形成亚稳态SA。RTP的最大寿命和效率可以达到654.87ms和5.02%,分别。机理研究表明,LDH能量陷阱可以增强分子间的相互作用,为亚稳态SA的存在和水相RTP的出现提供了先决条件。这一策略的普适性将迎来对其他多官能单体的探索,促进水相RTPSAs的发展。
    The application of supramolecular assembly (SA) with room temperature phosphorescence (RTP) in aqueous phase has the potential to revolutionize numerous fields. However, using simple molecules with crystalline RTP to construct SA with aqueous phase RTP is hardly possible from the standpoint of forces. The reason lies in that the transition from crystal to SA involves a structure transformation from highly stable to more dynamic state, leading to increased non-radiative deactivation pathways and silent RTP signal. Here, with the benefit of the confinement from the layered double hydroxide (LDH), various simple molecules (benzene derivatives) can successfully form metastable SA with aqueous phase RTP. The maximum of RTP lifetime and efficiency can reach 654.87 ms and 5.02 %, respectively. Mechanistic studies reveal the LDH energy trap can strengthen the intermolecular interaction, providing the prerequisite for the existence of metastable SA and appearance of aqueous phase RTP. The universality of this strategy will usher exploration into other multifunctional monomer, facilitating the development of SAs with aqueous phase RTP.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    低太阳能利用效率和严重的电荷复合仍然是光催化系统的主要挑战。在这里,通过两步沉积法成功制备了中空核壳Au/g-C3N4@Ag3PO4光热纳米反应器。受益于独特的中空核壳异质结构诱导的高效光谱利用和快速电荷分离,Au/g-C3N4@Ag3PO4的H2释放速率是原始g-C3N4的16.9倍,四环素的降解效率提高了88.1%。增强的催化性能可以归因于中空核壳结构上的有序电荷运动和局部高温环境,有效地加速了载体分离和化学反应动力学。这项工作突出了空间约束效应在光热催化中的重要作用,并为开发下一代高效光热催化剂提供了有希望的策略。
    Low solar energy utilization efficiency and serious charge recombination remain major challenges for photocatalytic systems. Herein, a hollow core-shell Au/g-C3N4@Ag3PO4 photothermal nanoreactor is successfully prepared by a two-step deposition method. Benefit from efficient spectral utilization and fast charge separation induced by the unique hollow core-shell heterostructure, the H2 evolution rate of Au/g-C3N4@Ag3PO4 is 16.9 times that of the pristine g-C3N4, and the degradation efficiency of tetracycline is increased by 88.1%. The enhanced catalytic performance can be attributed to the ordered charge movement on the hollow core-shell structure and a local high-temperature environment, which effectively accelerates the carrier separation and chemical reaction kinetics. This work highlights the important role of the space confinement effect in photothermal catalysis and provides a promising strategy for the development of the next generation of highly efficient photothermal catalysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:数字聚合酶链反应(数字PCR)是生命科学研究和临床诊断中重要的定量核酸分析方法。一个重要的假设是通过将单个核酸分子物理上限制在小体积中,可以增加相对浓度,从而进一步提高分析性能,这通常被定义为数字PCR中的限制效应。然而,这种限制效应的实验研究可能是具有挑战性的,因为它需要可以产生不同体积的分区的微流体装置和可以监测扩增动力学的仪器。(96).
    结果:这里,我们开发了一种实时数字PCR系统,该系统具有多卷液滴阵列滑动芯片(Muda-SlipChip),可以产生125nL的液滴,25nL,5nL,和1nL通过简单的“负载滑移”操作。在数字区域,通过减少音量,相对浓度增加,可以加速放大动力学,以及达到荧光阈值的时间,或Cq值,可以减少。当每个孔的拷贝数远高于1时,相对浓度与分区体积无关,因此,扩增动力学在不同体积分区中是相似的。该系统不仅限于研究数字核酸扩增的动力学,它还可以通过组合数字和模拟定量算法将数字核酸分析的动态范围扩展另外三个数量级。(140).
    结论:在这项研究中,我们首次通过具有多卷液滴阵列滑动芯片(Muda-SlipChip)的新型实时数字PCR系统,通过实验研究了数字PCR社区中的限制效应。并且通过该系统验证了与常规数字PCR相比更宽的定量方法的动态范围。该系统为生命科学研究和临床诊断提供了新的机会。(63).
    BACKGROUND: Digital polymerase chain reaction (digital PCR) is an important quantitative nucleic acid analysis method in both life science research and clinical diagnostics. One important hypothesis is that by physically constraining a single nucleic acid molecule in a small volume, the relative concentration can be increased therefore further improving the analysis performance, and this is commonly defined as the confinement effect in digital PCR. However, experimental investigation of this confinement effect can be challenging since it requires a microfluidic device that can generate partitions of different volumes and an instrument that can monitor the kinetics of amplification. (96).
    RESULTS: Here, we developed a real-time digital PCR system with a multivolume droplet array SlipChip (Muda-SlipChip) that can generate droplet of 125 nL, 25 nL, 5 nL, and 1 nL by a simple \"load-slip\" operation. In the digital region, by reducing the volume, the relative concentration is increased, the amplification kinetic can be accelerated, and the time to reach the fluorescence threshold, or Cq value, can be reduced. When the copy number per well is much higher than one, the relative concentration is independent of the partition volume, thus the amplification kinetics are similar in different volume partitions. This system is not limited to studying the kinetics of digital nucleic acid amplification, it can also extend the dynamic range of the digital nucleic acid analysis by additional three orders of magnitude by combining a digital and an analog quantification algorithm. (140).
    CONCLUSIONS: In this study, we experimentally investigated for the first time the confinement effect in the community of digital PCR via a new real-time digital PCR system with a multivolume droplet array SlipChip (Muda-SlipChip). And a wider dynamic range of quantification methods compared to conventional digital PCR was validated by this system. This system provides emerging opportunities for life science research and clinical diagnostics. (63).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于纤维素的可持续碳点,特别是羧甲基纤维素(CMCCD),被限制在无机网络中,导致CMCCDs@SiO2。这导致材料表现出长余辉,其在空气下也覆盖数秒的时间范围。与温度相关的发射光谱提供了有关温度辅助延迟荧光(TADF)和室温磷光(RTP)的信息,而光电流实验则提供了对黑暗时期电荷可用性的更深入了解。因此,它在光催化剂表面的可用性。光ATRP启动器,(溴)苯基乙酸乙酯(EBPA),从毫秒到纳秒时间帧猝灭发射,表明三重态参与光诱导电子转移(PET)。基于光-ATRP协议的自由基和活性自由基聚合均成功工作。不含金属的光-ATRP产生可扩链的大分子引发剂,其基于与MMA或与苯乙烯组合的还原机理。添加9ppmCu2+导致Mw/Mn为1.4,而增加至72ppm则改善了聚合物的均匀性;即Mw/Mn=1.03。对kerrialaca受限材料的补充实验,即KCD@SiO2,提供了类似的结果。Cu2+(9ppm)在光催化剂表面上的沉积解释了在ATRP方案中形成的聚合物的更好的均匀性。
    Sustainable carbon dots based on cellulose, particularly carboxymethyl cellulose carbon dots (CMCCDs), were confined in an inorganic network resulting in CMCCDs@SiO2. This resulted in a material exhibiting long afterglow covering a time frame of several seconds also under air. Temperature-dependent emission spectra gave information on thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) while photocurrent experiments provided a deeper understanding of charge availability in the dark period, and therefore, its availability on the photocatalyst surface. The photo-ATRP initiator, ethyl α-bromophenylacetate (EBPA), quenched the emission from the millisecond to the nanosecond time frame indicating participation of the triplet state in photoinduced electron transfer (PET). Both free radical and controlled radical polymerization based on photo-ATRP protocol worked successfully. Metal-free photo-ATRP resulted in chain extendable macroinitiators based on a reductive mechanism with either MMA or in combination with styrene. Addition of 9 ppm Cu2+ resulted in Mw/Mn of 1.4 while an increase to 72 ppm improved uniformity of the polymers; that is Mw/Mn=1.03. Complementary experiments with kerria laca carbon dots confined materials, namely KCDs@SiO2, provided similar results. Deposition of Cu2+ (9 ppm) on the photocatalyst surface explains better uniformity of the polymers formed in the ATRP protocol.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在原子水平上具有“Co-N-C”结构的催化剂设计对过氧单硫酸盐(PMS)活化高级氧化水处理表现出极大的兴趣。这里,我们提出了一种生产六氰合钴酸钴(Co-HCC)的创新方法,在外表面具有大量原子分离的CoII-NC位点。这种材料允许超高效的PMS活化产生大量的硫酸盐和羟基自由基,周转频率远高于迄今为止报道的大多数钴基催化剂,甚至是Co2离子的均相催化。根据实验结果和计算研究,我们对其空前的高催化性能获得了基本见解。然后,我们控制了Co-HCC在陶瓷膜上的生长,形成了一个有限的氧化环境,该环境利用了扩大的表面积和短寿命自由基的最大暴露量来快速去除进入孔中的有机污染物。因此,这种催化膜在高达10,000LMH(仅0.2s保留时间)的水通量下实现了微污染物的完全破坏,并且在复杂的工业废水基质中有机污染物的矿化率>90%(<100s保留时间),连同操作简单和长寿的优点(2周连续运行)。我们的研究在PMS活化的“Co-N-C”催化剂结构设计中引发了一个新的里程碑,并强调了生产用于从部分氧化到完全矿化的有机污染物的有限处理的催化膜作为新基准的极大兴趣。
    Catalyst design with a \"Co-N-C\" structure at the atomic level has shown great interest for peroxymonosulfate (PMS) activation toward advanced oxidation water treatment. Here, we present an innovative way of producing cobalt hexacyanocobaltate (Co-HCC) with an abundance of atomically isolated CoII-NC sites at the outer surface. This material allows ultraefficient PMS activation to generate plenty of sulfate and hydroxyl radicals, with a turnover frequency much higher than those of most cobalt-based catalysts reported so far and even the homogeneous catalysis by Co2+ ions. We gained fundamental insights on its unprecedently high catalytic performance based on experimental results and computational study. Then, we controlled the growth of Co-HCC on a ceramic membrane to form a confined oxidation environment that utilizes the extended surface area and maximal exposure of short-lived radicals for a fast removal of organic pollutants that enter the pores. As a result, this catalytic membrane achieves complete disruption of micropollutants under a water flux up to 10,000 LMH (merely 0.2 s retention time) and further >90% mineralization of organic pollutants in complex industrial wastewater matrices (<100 s retention time), together with the merits of operational simplicity and great longevity (2 weeks continuous run). Our study elicits a new milestone in \"Co-N-C\" catalyst structure design for PMS activation and highlights the great interest of producing catalytic membranes for a confined treatment of organic pollutants from partial oxidation to complete mineralization as a new benchmark.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    禁闭效应,限制纳米/亚纳米空间内的材料,已成为各种应用领域基础研究的创新方法,包括化学工程,膜分离,和催化。这种限制原理最近提出了解决可充电电池中的关键挑战的新观点。在空间限制内,新的微观结构和理化性能不断提高,提高了电池的性能。然而,很少有明确的定义和具体的评论可以为电池中的禁闭效应的利用提供全面的理解和指导。这篇综述旨在通过主要总结电池系统内各种尺度和尺寸的约束效应分类来填补这一空白。随后,提出了封闭环境的战略设计,以解决可充电电池的现有挑战。这些解决方案涉及电解质的物理化学性质的操纵,电极的电化学活性和稳定性的调节,以及对离子转移机制的见解。此外,提供了具体的观点,以加深对实现高性能可充电电池的约束效应的基本理解。总的来说,这篇综述强调了约束效应在定制电极材料的微观结构和理化性质方面的转化潜力,强调他们在设计新型储能装置中的关键作用。本文受版权保护。保留所有权利。
    The confinement effect, restricting materials within nano/sub-nano spaces, has emerged as an innovative approach for fundamental research in diverse application fields, including chemical engineering, membrane separation, and catalysis. This confinement principle recently presents fresh perspectives on addressing critical challenges in rechargeable batteries. Within spatial confinement, novel microstructures and physiochemical properties have been raised to promote the battery performance. Nevertheless, few clear definitions and specific reviews are available to offer a comprehensive understanding and guide for utilizing the confinement effect in batteries. This review aims to fill this gap by primarily summarizing the categorization of confinement effects across various scales and dimensions within battery systems. Subsequently, the strategic design of confinement environments is proposed to address existing challenges in rechargeable batteries. These solutions involve the manipulation of the physicochemical properties of electrolytes, the regulation of electrochemical activity, and stability of electrodes, and insights into ion transfer mechanisms. Furthermore, specific perspectives are provided to deepen the foundational understanding of the confinement effect for achieving high-performance rechargeable batteries. Overall, this review emphasizes the transformative potential of confinement effects in tailoring the microstructure and physiochemical properties of electrode materials, highlighting their crucial role in designing novel energy storage devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号