Raptor

猛禽
  • 文章类型: Journal Article
    目的:组织缺血后适当的动脉生成对于重建稳定的血液循环是必要的;然而,这一过程在2型糖尿病(T2DM)中受损.猛禽,是支架蛋白和哺乳动物雷帕霉素靶复合物1(mTORC1)的组分。然而,内皮细胞Raptor在T2DM患者动脉生成中的作用尚不清楚.本研究探讨了内皮Raptor在T2DM缺血诱导的动脉生成中的作用。
    结果:虽然内皮细胞mTORC1在T2DM中呈过度活跃,我们在两种小鼠模型和人血管中观察到内皮Raptor的表达显著降低。可诱导的内皮特异性Raptor敲除严重加剧了12周高脂饮食喂养小鼠后肢缺血性损伤后后肢灌注和动脉生成受损。此外,我们发现Raptor缺乏抑制了内皮细胞中的血管内皮生长因子受体2(VEGFR2)信号传导,并以PTP1B依赖性方式抑制了VEGF诱导的细胞迁移和管形成.此外,质谱分析表明Raptor与神经纤毛蛋白1(NRP1)相互作用,VEGFR2的共受体,并通过促进NRP1和Synectin之间的相互作用来介导VEGFR2的运输。最后,我们发现,在高脂饮食喂养的小鼠中,内皮细胞特异性过表达Raptor突变体(mTOR结合缺失)逆转了内皮Raptor基因敲除诱导的后肢灌注和动脉生成受损.
    结论:总的来说,我们的研究证明了内皮Raptor在通过介导VEGFR2信号促进T2DM缺血诱导的动脉生成中的关键作用.因此,内皮Raptor是促进T2DM动脉生成和改善灌注的新治疗靶点。
    OBJECTIVE: Proper arteriogenesis after tissue ischemia is necessary to rebuild stable blood circulation; nevertheless, this process is impaired in type-2 diabetes mellitus (T2DM). Raptor, is a scaffold protein and a component of mammalian target of rapamycin complex 1 (mTORC1). However, the role of the endothelial Raptor in arteriogenesis under the conditions of T2DM remains unknown. This study investigated the role of endothelial Raptor in ischemia-induced arteriogenesis during T2DM.
    RESULTS: Although endothelial mTORC1 is hyperactive in T2DM, we observed a marked reduction in the expression of endothelial Raptor in two mouse models and in human vessels. Inducible endothelial-specific Raptor knockout severely exacerbated impaired hindlimb perfusion and arteriogenesis after hindlimb ischemic injury in 12-week high-fat diet fed mice. Additionally, we found that Raptor deficiency dampened vascular endothelial growth factor receptor 2 (VEGFR2) signaling in endothelial cells and inhibited VEGF-induced cell migration and tube formation in a PTP1B-dependent manner. Furthermore, mass spectrometry analysis indicated that Raptor interacts with neuropilin 1 (NRP1), the co-receptor of VEGFR2, and mediates VEGFR2 trafficking by facilitating the interaction between NRP1 and Synectin. Finally, we found that endothelial cell-specific overexpression of the Raptor mutant (loss of mTOR binding) reversed impaired hindlimb perfusion and arteriogenesis induced by endothelial Raptor knockout in high-fat diet fed mice.
    CONCLUSIONS: Collectively, our study demonstrated the crucial role of endothelial Raptor in promoting ischemia-induced arteriogenesis in T2DM by mediating VEGFR2 signaling. Thus, endothelial Raptor is a novel therapeutic target for promoting arteriogenesis and ameliorating perfusion in T2DM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Ataxin-2(Atx2)是一种聚谷氨酰胺(polyQ)蛋白,其中polyQ束的异常扩张可以引发蛋白质聚集,从而导致脊髓小脑共济失调2型(SCA2),但是Atx2聚集导致蛋白质病的潜在机制仍然难以捉摸。这里,我们通过分子细胞生物学方法研究了Atx2聚集的分子机制和细胞后果。我们已经发现,无论是正常的还是polyQ扩展的Atx2都可以隔离Raptor,哺乳动物雷帕霉素靶复合物1(mTORC1)的成分,根据它们的特定相互作用转换成聚集体。进一步的研究表明,PolyQ区和Atx2的N末端区域(残基1-784)负责特异性螯合。此外,这种隔离导致mTORC1活性的抑制,如磷酸化P70S6K的下调,可以通过Raptor的过表达来逆转。由于mTORC1是自噬的关键调节因子,Atx2聚集和隔离还通过上调LC3-II和降低磷酸化ULK1水平来诱导自噬。这项研究提出Atx2将Raptor隔离成聚集体,从而损害细胞mTORC1信号并诱导自噬,这将有利于更好地理解SCA2和其他polyQ疾病的发病机制。
    Ataxin-2 (Atx2) is a polyglutamine (polyQ) protein, in which abnormal expansion of the polyQ tract can trigger protein aggregation and consequently cause spinocerebellar ataxia type 2 (SCA2), but the mechanism underlying how Atx2 aggregation leads to proteinopathy remains elusive. Here, we investigate the molecular mechanism and cellular consequences of Atx2 aggregation by molecular cell biology approaches. We have revealed that either normal or polyQ-expanded Atx2 can sequester Raptor, a component of mammalian target of rapamycin complex 1 (mTORC1), into aggregates based on their specific interaction. Further research indicates that the polyQ tract and the N-terminal region (residues 1-784) of Atx2 are responsible for the specific sequestration. Moreover, this sequestration leads to suppression of the mTORC1 activity as represented by down-regulation of phosphorylated P70S6K, which can be reversed by overexpression of Raptor. As mTORC1 is a key regulator of autophagy, Atx2 aggregation and sequestration also induces autophagy by upregulating LC3-II and reducing phosphorylated ULK1 levels. This study proposes that Atx2 sequesters Raptor into aggregates, thereby impairing cellular mTORC1 signaling and inducing autophagy, and will be beneficial for a better understanding of the pathogenesis of SCA2 and other polyQ diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肝细胞癌(HCC)是一种常见的恶性肿瘤,死亡率高。人苯丙氨酸tRNA合成酶(PheRS)包含由FARSA基因编码的两个α催化亚基和由FARSB基因编码的两个β调节亚基。FARSB是一种潜在的癌基因,但没有实验数据显示FARSB与HCC进展之间的关系。我们发现FARSB在肝癌中的高表达与患者的低生存率和不良预后密切相关。在肝癌细胞中,FARSBmRNA和蛋白表达水平升高,促进细胞增殖和迁移。机械上,FARSB通过与mTORC1复合物的Raptor结合来激活mTOR复合物1(mTORC1)信号通路,从而在促进癌症中发挥作用。此外,我们发现FARSB可以通过调节mTOR信号通路来抑制擦除素诱导的铁细胞凋亡,这可能是FARSB促进HCC进展的另一种机制。总之,FARSB促进HCC进展,并与患者的不良预后相关。FARSB有望成为HCC早期筛查和治疗的生物标志物。
    Hepatocellular carcinoma (HCC) is a common malignant tumor with high mortality. Human phenylalanine tRNA synthetase (PheRS) comprises two α catalytic subunits encoded by the FARSA gene and two β regulatory subunits encoded by the FARSB gene. FARSB is a potential oncogene, but no experimental data show the relationship between FARSB and HCC progression. We found that the high expression of FARSB in liver cancer is closely related to patients\' low survival and poor prognosis. In liver cancer cells, the mRNA and protein expression levels of FARSB are increased and promote cell proliferation and migration. Mechanistically, FARSB activates the mTOR complex 1 (mTORC1) signaling pathway by binding to the component Raptor of the mTORC1 complex to play a role in promoting cancer. In addition, we found that FARSB can inhibit erastin-induced ferroptosis by regulating the mTOR signaling pathway, which may be another mechanism by which FARSB promotes HCC progression. In summary, FARSB promotes HCC progression and is associated with the poor prognosis of patients. FARSB is expected to be a biomarker for early screening and treatment of HCC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:mTORC1(雷帕霉素复合物1的机制靶标)与淋巴瘤进展相关。在滤泡性淋巴瘤患者中发现的致癌RRAGC(Rag鸟苷三磷酸酶C)突变促进Raptor(与mTOR相关的调节蛋白)和RagGTP酶之间的相互作用。它促进mTORC1的激活并加速淋巴生成。Cardamonin通过降低Raptor的蛋白质水平来抑制mTORC1。在本研究中,我们研究了豆蔻素对RRAGC突变淋巴瘤的抑制作用和可能的作用机制。这可以为具有RRAGC突变的淋巴瘤提供精确的靶向治疗。
    方法:使用细胞计数试剂盒-8(CCK-8)测定法测量细胞活力。使用蛋白质印迹法测定蛋白质表达和磷酸化水平。通过免疫共沉淀确定mTOR和Raptor与RagC的相互作用。通过慢病毒感染产生过表达RagC野生型(RagCWT)和RagCThr90Asn(RagCT90N)的细胞。通过慢病毒介导的shRNA转导进行Raptor敲低。在异种移植模型中评估了豆蔻素的体内抗肿瘤作用。
    结果:Cardamonin通过降低Raptor蛋白水平破坏mTOR复合物相互作用。经由慢病毒感染的RagCT90N过表达增加了细胞增殖和mTORC1活化。与正常细胞和RagCWT细胞相比,RagCT90N突变细胞的活力和肿瘤生长速率对豆蔻素治疗更敏感。在RagCT90N-突变细胞中,Cardamonin对mTOR和p70S6激酶1的磷酸化也表现出更强的抑制作用。Raptor敲除消除了豆蔻素对mTOR的抑制作用。体内异种移植模型证明RagCT90N-突变体显示出对豆蔻素治疗的显著更高的敏感性。
    结论:Cardamonin对RagCT90N突变细胞具有选择性治疗作用。Cardamonin可作为RRAGC突变滤泡性淋巴瘤个体化治疗的药物。
    BACKGROUND: mTORC1 (mechanistic target of rapamycin complex 1) is associated with lymphoma progression. Oncogenic RRAGC (Rag guanosine triphosphatase C) mutations identified in patients with follicular lymphoma facilitate the interaction between Raptor (regulatory protein associated with mTOR) and Rag GTPase. It promotes the activation of mTORC1 and accelerates lymphomagenesis. Cardamonin inhibits mTORC1 by decreasing the protein level of Raptor. In the present study, we investigated the inhibitory effect and possible mechanism of action of cardamonin in RRAGC-mutant lymphoma. This could provide a precise targeted therapy for lymphoma with RRAGC mutations.
    METHODS: Cell viability was measured using a cell counting kit-8 (CCK-8) assay. Protein expression and phosphorylation levels were determined using western blotting. The interactions of mTOR and Raptor with RagC were determined by co-immunoprecipitation. Cells overexpressing RagC wild-type (RagCWT) and RagC Thr90Asn (RagCT90N) were generated by lentiviral infection. Raptor knockdown was performed by lentivirus-mediated shRNA transduction. The in vivo anti-tumour effect of cardamonin was assessed in a xenograft model.
    RESULTS: Cardamonin disrupted mTOR complex interactions by decreasing Raptor protein levels. RagCT90N overexpression via lentiviral infection increased cell proliferation and mTORC1 activation. The viability and tumour growth rate of RagCT90N-mutant cells were more sensitive to cardamonin treatment than those of normal and RagCWT cells. Cardamonin also exhibited a stronger inhibitory effect on the phosphorylation of mTOR and p70 S6 kinase 1 in RagCT90N-mutant cells. Raptor knockdown abolishes the inhibitory effects of cardamonin on mTOR. An in vivo xenograft model demonstrated that the RagCT90N-mutant showed significantly higher sensitivity to cardamonin treatment.
    CONCLUSIONS: Cardamonin exerts selective therapeutic effects on RagCT90N-mutant cells. Cardamonin can serve as a drug for individualised therapy for follicular lymphoma with RRAGC mutations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体脂肪酸氧化(FAO)的药理学抑制已在临床上用于通过重塑细胞代谢来缓解某些代谢疾病。然而,线粒体FAO抑制也导致mTORC1活化相关蛋白合成和组织肥大,但机制尚不清楚。这里,通过使用线粒体FAO抑制剂(Mildronate或Etomoxir)或敲除肉碱棕榈酰转移酶-1,我们发现线粒体FAO抑制通过Gcn5依赖性Raptor乙酰化激活mTORC1途径。线粒体FAO抑制显着促进葡萄糖分解代谢并增加细胞内乙酰辅酶A水平。为了响应增加的细胞内乙酰辅酶A,乙酰转移酶Gcn5通过直接相互作用催化Raptor乙酰化作用激活mTORC1。进一步的研究还筛选了Raptor脱乙酰酶HDACII类,并确定HDAC7是Raptor的潜在调节剂。这些结果为线粒体FAO抑制后的mTORC1激活提供了可能的机制解释,也揭示了营养代谢重塑在通过影响乙酰辅酶A产生调节蛋白质乙酰化中的作用。
    Pharmacological inhibition of mitochondrial fatty acid oxidation (FAO) has been clinically used to alleviate certain metabolic diseases by remodeling cellular metabolism. However, mitochondrial FAO inhibition also leads to mechanistic target of rapamycin complex 1 (mTORC1) activation-related protein synthesis and tissue hypertrophy, but the mechanism remains unclear. Here, by using a mitochondrial FAO inhibitor (mildronate or etomoxir) or knocking out carnitine palmitoyltransferase-1, we revealed that mitochondrial FAO inhibition activated the mTORC1 pathway through general control nondepressible 5-dependent Raptor acetylation. Mitochondrial FAO inhibition significantly promoted glucose catabolism and increased intracellular acetyl-CoA levels. In response to the increased intracellular acetyl-CoA, acetyltransferase general control nondepressible 5 activated mTORC1 by catalyzing Raptor acetylation through direct interaction. Further investigation also screened Raptor deacetylase histone deacetylase class II and identified histone deacetylase 7 as a potential regulator of Raptor. These results provide a possible mechanistic explanation for the mTORC1 activation after mitochondrial FAO inhibition and also bring light to reveal the roles of nutrient metabolic remodeling in regulating protein acetylation by affecting acetyl-CoA production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    雷帕霉素复合物1(mTORC1)的机制靶标响应于营养水平调节代谢和细胞生长。mTORC1的失调导致广谱的疾病。葡萄糖是细胞的主要能量供应,因此,必须通过高度响应的信号机制将葡萄糖水平准确地传递给mTORC1以控制mTORC1的活性。这里,我们报道了葡萄糖诱导的mTORC1激活受Raptor的O-GlcNAcylation调节,HEK293T细胞中mTORC1的核心组分。机械上,Raptor在苏氨酸700处的O-GlcNAcylation促进Raptor和RagGTPases之间的相互作用,并促进mTOR易位到溶酶体表面,从而激活mTORC1。此外,我们表明AMPK介导的Raptor磷酸化抑制RaptorO-GlcNAcylation并抑制Raptor-Rags相互作用。我们的发现揭示了一种精确控制的机制,这表明葡萄糖如何协调调节细胞合成代谢和分解代谢。
    The mechanistic target of rapamycin complex 1 (mTORC1) regulates metabolism and cell growth in response to nutrient levels. Dysregulation of mTORC1 results in a broad spectrum of diseases. Glucose is the primary energy supply of cells, and therefore, glucose levels must be accurately conveyed to mTORC1 through highly responsive signaling mechanisms to control mTORC1 activity. Here, we report that glucose-induced mTORC1 activation is regulated by O-GlcNAcylation of Raptor, a core component of mTORC1, in HEK293T cells. Mechanistically, O-GlcNAcylation of Raptor at threonine 700 facilitates the interactions between Raptor and Rag GTPases and promotes the translocation of mTOR to the lysosomal surface, consequently activating mTORC1. In addition, we show that AMPK-mediated phosphorylation of Raptor suppresses Raptor O-GlcNAcylation and inhibits Raptor-Rags interactions. Our findings reveal an exquisitely controlled mechanism, which suggests how glucose coordinately regulates cellular anabolism and catabolism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经元信号如何影响脑髓鞘形成仍然知之甚少。我们显示神经元RHEB-mTORC1-DLK1轴失调损害脑髓鞘形成。神经元RhebcKO损害少突胶质细胞分化/髓鞘形成,具有激活的神经元表达的印迹基因Dlk1。神经元Dlk1cKO改善神经元RhebcKO小鼠的髓鞘形成缺陷,表明激活的神经元Dlk1表达有助于由RhebcKO引起的髓鞘形成受损。RhebcKO对Dlk1表达的影响由mTORC1介导;神经元mTorcKO和RaptorcKO以及对mTORC1的药理学抑制概括了神经元Dlk1表达的升高。我们证明了DLK1的分泌形式和膜结合的DLK1均抑制培养的少突胶质细胞前体细胞分化为表达髓磷脂蛋白的少突胶质细胞。最后,转基因小鼠中Dlk1的神经元表达减少了成熟少突胶质细胞的形成和髓鞘形成。这项研究确定了Dlk1是少突胶质细胞髓鞘形成的抑制剂,以及将神经元信号传导改变与少突胶质细胞功能障碍联系起来的机制。
    How neuronal signaling affects brain myelination remains poorly understood. We show dysregulated neuronal RHEB-mTORC1-DLK1 axis impairs brain myelination. Neuronal Rheb cKO impairs oligodendrocyte differentiation/myelination, with activated neuronal expression of the imprinted gene Dlk1. Neuronal Dlk1 cKO ameliorates myelination deficit in neuronal Rheb cKO mice, indicating that activated neuronal Dlk1 expression contributes to impaired myelination caused by Rheb cKO. The effect of Rheb cKO on Dlk1 expression is mediated by mTORC1; neuronal mTor cKO and Raptor cKO and pharmacological inhibition of mTORC1 recapitulate elevated neuronal Dlk1 expression. We demonstrate that both a secreted form of DLK1 and a membrane-bound DLK1 inhibit the differentiation of cultured oligodendrocyte precursor cells into oligodendrocytes expressing myelin proteins. Finally, neuronal expression of Dlk1 in transgenic mice reduces the formation of mature oligodendrocytes and myelination. This study identifies Dlk1 as an inhibitor of oligodendrocyte myelination and a mechanism linking altered neuronal signaling with oligodendrocyte dysfunction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞存活需要营养供应和氧化还原稳态的平衡,癌细胞抗氧化能力的增加可能导致化疗失败。
    目的探讨豆蔻素诱导卵巢癌细胞氧化应激抑制增殖的机制。
    药物治疗24小时后,CCK8试剂盒和伤口愈合试验检测细胞活力和迁移能力,分别,流式细胞仪检测ROS水平。通过蛋白质组学分析豆蔻素给药后的差异蛋白表达,蛋白质水平通过蛋白质印迹法检测。
    Cardamonin抑制细胞生长,这与ROS积累有关。蛋白质组学分析表明MAPK通路可能参与了豆蔻素诱导的氧化应激。Westernblotting结果显示,豆蔻素降低了Raptor的表达以及mTORC1和ERK1/2的活性。在RaptorKO细胞中观察到相同的结果。值得注意的是,在RaptorKO细胞中,豆蔻素的作用减弱。
    Raptor通过mTORC1和ERK1/2途径介导了豆蔻素对细胞氧化还原稳态和细胞增殖的功能。
    A balance on nutrient supply and redox homeostasis is required for cell survival, and increased antioxidant capacity of cancer cells may lead to chemotherapy failure.
    To investigate the mechanism of anti-proliferation of cardamonin by inducing oxidative stress in ovarian cancer cells.
    After 24 h of drug treatment, CCK8 kit and wound healing test were used to detect cell viability and migration ability, respectively, and the ROS levels were detected by flow cytometry. The differential protein expression after cardamonin administration was analyzed by proteomics, and the protein level was detected by Western blotting.
    Cardamonin inhibited the cell growth, which was related to ROS accumulation. Proteomic analysis suggested that MAPK pathway might be involved in cardamonin-induced oxidative stress. Western blotting showed that cardamonin decreased Raptor expression and the activity of mTORC1 and ERK1/2. Same results were observed in Raptor KO cells. Notably, in Raptor KO cells, the effect of cardamonin was weakened.
    Raptor mediated the function of cardamonin on cellular redox homeostasis and cell proliferation through mTORC1 and ERK1/2 pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    猛禽,mTORC1的关键成分是向mTORC1募集底物并有助于其亚细胞定位所必需的。Raptor具有高度保守的N端结构域和七个WD40重复序列,与mTOR和其他mTORC1相关蛋白相互作用。mTORC1参与各种细胞事件并介导分化和代谢。直接或间接地,许多因素介导淋巴细胞的分化和功能,这对免疫至关重要。在这次审查中,我们总结了Raptor在淋巴细胞分化和功能中的作用,Raptor介导细胞因子的分泌以诱导早期淋巴细胞代谢,发展,扩散和迁移。此外,Raptor通过调节淋巴细胞的稳态维持和激活来调节淋巴细胞的功能。
    Raptor, a key component of mTORC1, is required for recruiting substrates to mTORC1 and contributing to its subcellular localization. Raptor has a highly conserved N-terminus domain and seven WD40 repeats, which interact with mTOR and other mTORC1-related proteins. mTORC1 participates in various cellular events and mediates differentiation and metabolism. Directly or indirectly, many factors mediate the differentiation and function of lymphocytes that is essential for immunity. In this review, we summarize the role of Raptor in lymphocytes differentiation and function, whereby Raptor mediates the secretion of cytokines to induce early lymphocyte metabolism, development, proliferation and migration. Additionally, Raptor regulates the function of lymphocytes by regulating their steady-state maintenance and activation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Bcl-3是非典型IκB家族成员,其通过与p50/p52同源二聚体亚基结合来调节细胞核中的转录。尽管各种研究表明Bcl-3在生理功能中的重要作用,其在新陈代谢中的作用尚不清楚。我们发现Bcl-3对自身免疫具有代谢调节作用。Bcl-3耗尽的小鼠不能发展实验性自身免疫性脑脊髓炎。抗病性与Th17细胞中乳酸水平的增加有关,乳酸可以减轻WT小鼠的EAE发展。Bcl-3缺陷小鼠具有更多分化的Th17细胞和这些细胞中增加的细胞外酸化率。同时,它们的最终呼吸速率和呼吸储备能力明显低于野生型小鼠。然而,向Bcl-3缺陷的Th17细胞中加入GNE-140(LADH抑制剂)可以逆转这种现象,补充乳酸可以增加WT小鼠Th17细胞的糖酵解代谢。机械上,Bcl-3可以通过ANK和RNC域与Raptor相互作用。因此,Bcl-3通过促进Raptor介导的能量代谢调节Th17致病性,揭示了适应性免疫的新调控。
    Bcl-3 is an atypical IκB family member that regulates transcription in the nucleus by binding to the p50/p52 homologous dimer subunit. Although various studies illustrate the important role of Bcl-3 in physiological function, its role in metabolism is still unclear. We found that Bcl-3 has a metabolic regulatory effect on autoimmunity. Bcl-3-depleted mice are unable to develop experimental autoimmune encephalomyelitis. The disease resistance was linked to an increase in lactate levels in Th17 cells, and lactate could alleviate EAE development in WT mice. Bcl-3 deficient mice had more differentiated Th17 cells and an increased extracellular acidification rate in these cells. Concurrently, their ultimate respiration rate and respiratory reserve capacity were significantly lower than wild-type mice. However, adding GNE-140 (LADH inhibitor) to Bcl-3-deficient Th17 cells could reverse the phenomenon, and lactate supplementation could increase the glycolysis metabolism of Th17 cells in WT mice. Mechanically, Bcl-3 could interact with Raptor through ANK and RNC domains. Therefore, Bcl-3 regulates Th17 pathogenicity by promoting Raptor mediated energy metabolism, revealing a novel regulation of adaptive immunity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号