Phosphatidylinositol Phosphates

磷脂酰肌醇磷酸酯
  • 文章类型: Journal Article
    伯氏柯西拉(C.burnetii)是Q热的病原体,人畜共患疾病.伯氏梭菌的细胞内复制需要吞噬溶酶体样区室的成熟,称为复制允许的含柯西氏菌的液泡(CCV)。通过促进混杂囊泡的融合,Dot/Icm分泌系统分泌的效应蛋白对于单个大型CCV的成熟是必不可少的。然而,CCV维持和逃避宿主细胞清除的机制尚待确定。这里,我们表明,伯氏梭菌分泌的柯西氏菌液泡蛋白E(CvpE)通过诱导溶酶体样液泡(LLV)增大而促进CCV生物发生。在表达CvpE的细胞中,通过插管和自溶酶体降解的LLV裂变受损。随后,我们发现CvpE以间接方式抑制溶酶体Ca2通道瞬时受体电位通道粘磷脂1(TRPML1)活性,其中CvpE结合磷脂酰肌醇3-磷酸[PI(3)P]并干扰溶酶体中的PIKfyve活性。最后,TRPML1的激动剂ML-SA5抑制CCV生物发生和C.burnetii复制。这些结果提供了对CvpE维持CCV的机制的见解,并表明TRPML1的激动剂可以是一种新型的潜在治疗方法,该方法通过增强含柯西氏菌的液泡(CCV)裂变而不依赖于抗生素治疗Q热。
    Coxiella burnetii (C. burnetii) is the causative agent of Q fever, a zoonotic disease. Intracellular replication of C. burnetii requires the maturation of a phagolysosome-like compartment known as the replication permissive Coxiella-containing vacuole (CCV). Effector proteins secreted by the Dot/Icm secretion system are indispensable for maturation of a single large CCV by facilitating the fusion of promiscuous vesicles. However, the mechanisms of CCV maintenance and evasion of host cell clearance remain to be defined. Here, we show that C. burnetii secreted Coxiella vacuolar protein E (CvpE) contributes to CCV biogenesis by inducing lysosome-like vacuole (LLV) enlargement. LLV fission by tubulation and autolysosome degradation is impaired in CvpE-expressing cells. Subsequently, we found that CvpE suppresses lysosomal Ca2+ channel transient receptor potential channel mucolipin 1 (TRPML1) activity in an indirect manner, in which CvpE binds phosphatidylinositol 3-phosphate [PI(3)P] and perturbs PIKfyve activity in lysosomes. Finally, the agonist of TRPML1, ML-SA5, inhibits CCV biogenesis and C. burnetii replication. These results provide insight into the mechanisms of CCV maintenance by CvpE and suggest that the agonist of TRPML1 can be a novel potential treatment that does not rely on antibiotics for Q fever by enhancing Coxiella-containing vacuoles (CCVs) fission.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    主要营养素葡萄糖的代谢串扰,氨基酸和脂肪酸(FAs)确保全身代谢稳态。葡萄糖和FAs供应之间的协调以满足各种生理需求尤其重要,因为不适当的营养水平会导致代谢紊乱。如糖尿病和代谢功能障碍相关的脂肪性肝炎(MASH)。为了响应血糖水平的波动,脂解被认为主要是激素调节,以控制胰岛素从脂滴中释放FA,儿茶酚胺和胰高血糖素.然而,是否存在通过葡萄糖感应直接调节脂解的一般细胞内在机制仍在很大程度上未知.在这里,我们报告了这种内在机制的识别,这涉及高尔基PtdIns4P介导的调节脂肪甘油三酯脂肪酶(ATGL)通过细胞内葡萄糖传感驱动的脂解。机械上,细胞内葡萄糖的消耗导致较低的高尔基体PtdIns4P水平,并因此减少了高尔基体中E3连接酶复合物CUL7FBXW8的组装。E3连接酶复合物水平的降低导致高尔基体中ATGL的多泛素化减少和ATGL驱动的脂解作用增强。这种细胞内在机制调节细胞内FAs的库及其细胞外释放以满足禁食和葡萄糖剥夺期间的生理需求。此外,在单纯性肝脂肪变性和MASH小鼠模型中高尔基PtdIns4P-CUL7FBXW8-ATGL轴的遗传和药理学操作,以及在人脂肪变性肝脏移植物的离体灌注期间导致脂肪变性的改善,这表明该途径可能是代谢功能障碍相关的脂肪变性肝病和可能的MASH的有希望的靶标。
    Metabolic crosstalk of the major nutrients glucose, amino acids and fatty acids (FAs) ensures systemic metabolic homeostasis. The coordination between the supply of glucose and FAs to meet various physiological demands is especially important as improper nutrient levels lead to metabolic disorders, such as diabetes and metabolic dysfunction-associated steatohepatitis (MASH). In response to the oscillations in blood glucose levels, lipolysis is thought to be mainly regulated hormonally to control FA liberation from lipid droplets by insulin, catecholamine and glucagon. However, whether general cell-intrinsic mechanisms exist to directly modulate lipolysis via glucose sensing remains largely unknown. Here we report the identification of such an intrinsic mechanism, which involves Golgi PtdIns4P-mediated regulation of adipose triglyceride lipase (ATGL)-driven lipolysis via intracellular glucose sensing. Mechanistically, depletion of intracellular glucose results in lower Golgi PtdIns4P levels, and thus reduced assembly of the E3 ligase complex CUL7FBXW8 in the Golgi apparatus. Decreased levels of the E3 ligase complex lead to reduced polyubiquitylation of ATGL in the Golgi and enhancement of ATGL-driven lipolysis. This cell-intrinsic mechanism regulates both the pool of intracellular FAs and their extracellular release to meet physiological demands during fasting and glucose deprivation. Moreover, genetic and pharmacological manipulation of the Golgi PtdIns4P-CUL7FBXW8-ATGL axis in mouse models of simple hepatic steatosis and MASH, as well as during ex vivo perfusion of a human steatotic liver graft leads to the amelioration of steatosis, suggesting that this pathway might be a promising target for metabolic dysfunction-associated steatotic liver disease and possibly MASH.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:初级纤毛是从细胞表面突出并存在于大多数脊椎动物细胞上的静态微管基结构。磷脂的适当定位对于纤毛的形成和稳定性至关重要。INPP5E是纤毛定位的肌醇5-磷酸酶;它的缺失改变了睫状膜中的磷酸肌醇组成,扰乱纤毛功能。
    方法:EGFP-2xP4MSidM,PHPLCδ1-EGFP,通过Gateway系统构建SMO-tRFP质粒,建立稳定的RPE1细胞系。用CRISPR/Cas9系统构建INPP5EKORPE1细胞系。通过免疫荧光显微镜检查INPP5E的定位以及PI(4,5)P2和PI4P的分布。通过ImageJ定量与纤毛共定位的荧光强度。
    结果:在RPE1细胞中,PI4P位于睫状膜,而PI(4,5)P2位于纤毛的底部。击倒或击倒INPP5E会改变这种分布,导致PI(4,5)P2沿睫状膜分布,并从纤毛中消失PI4P。同时,PI(4,5)P2位于由SMO-tRFP标记的睫状膜中。
    结论:INPP5E调节磷酸肌醇在纤毛上的分布。PI(4,5)P2定位在用SMO-tRFP标记的睫状膜上,表明睫状袋膜含有PI(4,5)P2,早期膜结构中的磷酸肌醇成分可能与成熟睫状膜中的磷酸肌醇成分不同。
    BACKGROUND: Primary cilia are static microtubule-based structures protruding from the cell surface and present on most vertebrate cells. The appropriate localization of phospholipids is essential for cilia formation and stability. INPP5E is a cilia-localized inositol 5-phosphatase; its deletion alters the phosphoinositide composition in the ciliary membrane, disrupting ciliary function.
    METHODS: The EGFP-2xP4MSidM, PHPLCδ1-EGFP, and SMO-tRFP plasmids were constructed by the Gateway system to establish a stable RPE1 cell line. The INPP5E KO RPE1 cell line was constructed with the CRISPR/Cas9 system. The localization of INPP5E and the distribution of PI(4,5)P2 and PI4P were examined by immunofluorescence microscopy. The fluorescence intensity co-localized with cilia was quantified by ImageJ.
    RESULTS: In RPE1 cells, PI4P is localized at the ciliary membrane, whereas PI(4,5)P2 is localized at the base of cilia. Knocking down or knocking out INPP5E alters this distribution, resulting in the distribution of PI(4,5)P2 along the ciliary membrane and the disappearance of PI4P from the cilia. Meanwhile, PI(4,5)P2 is located in the ciliary membrane labeled by SMO-tRFP.
    CONCLUSIONS: INPP5E regulates the distribution of phosphoinositide on cilia. PI(4,5)P2 localizes at the ciliary membrane labeled with SMO-tRFP, indicating that ciliary pocket membrane contains PI(4,5)P2, and phosphoinositide composition in early membrane structures may differ from that in mature ciliary membrane.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:许多病毒通过劫持内体运输进入宿主细胞。CapZ,一种典型的肌动蛋白加帽蛋白,参与内体运输,然而,它在胞吞和病毒感染中的确切作用仍然难以捉摸。
    结果:这里,我们发现CapZ与早期内体(EEs)短暂相关,随后在两个EEs融合后从成熟的EEs中释放出来,这通过PI(3)P到PI(3,5)P2的转化来促进。Vuacuolin-1(一种三嗪化合物)在EEs处稳定了CapZ,从而阻止了EEs向晚期内体(LE)的过渡。同样,通过雷帕霉素诱导的蛋白质-蛋白质相互作用系统将CapZ人工连接到EEs,阻断了早期到晚期的内体转变。值得注意的是,CapZ敲除或通过雷帕霉素将CapZ人工连接到EE显着抑制黄病毒,例如,寨卡病毒(ZIKV)和登革热病毒(DENV),或者β-冠状病毒,例如,鼠肝炎病毒(MHV),通过防止RNA基因组从内吞囊泡中逃逸来感染。
    结论:这些结果表明,CapZ与EEs的时间关联促进了早期到晚期内体转变(生理上)和病毒基因组从内吞囊泡释放(病理上)。
    BACKGROUND: Many viruses enter host cells by hijacking endosomal trafficking. CapZ, a canonical actin capping protein, participates in endosomal trafficking, yet its precise role in endocytosis and virus infection remains elusive.
    RESULTS: Here, we showed that CapZ was transiently associated with early endosomes (EEs) and was subsequently released from the matured EEs after the fusion of two EEs, which was facilitated by PI(3)P to PI(3,5)P2 conversion. Vacuolin-1 (a triazine compound) stabilized CapZ at EEs and thus blocked the transition of EEs to late endosomes (LEs). Likewise, artificially tethering CapZ to EEs via a rapamycin-induced protein-protein interaction system blocked the early-to-late endosome transition. Remarkably, CapZ knockout or artificially tethering CapZ to EEs via rapamycin significantly inhibited flaviviruses, e.g., Zika virus (ZIKV) and dengue virus (DENV), or beta-coronavirus, e.g., murine hepatitis virus (MHV), infection by preventing the escape of RNA genome from endocytic vesicles.
    CONCLUSIONS: These results indicate that the temporal association of CapZ with EEs facilitates early-to-late endosome transition (physiologically) and the release of the viral genome from endocytic vesicles (pathologically).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    磷脂酰肌醇4激酶(PI4Ks)可以磷酸化磷脂酰肌醇(PI)以产生磷脂酰肌醇4磷酸(PI4P)并维持其代谢平衡和位置。PI4P,真核细胞中最丰富的单磷酸肌醇,是高级磷酸肌醇的前体和PLC/PKC和PI3K/Akt信号通路的必需底物。PI4Ks调节囊泡运输,信号转导,胞质分裂,和细胞统一,并参与各种生理和病理过程,包括疟原虫和隐孢子虫等寄生虫的感染和生长,RNA病毒的复制和存活,以及肿瘤和神经系统疾病的发展。针对PI4Ks和PI4P的新药开发一直是药物研究和临床应用的重点,尤其是近年来。特别是,PI4K抑制剂在治疗疟疾和隐孢子虫病方面取得了很大进展。我们描述了PI4Ks的生物学特性;总结了PI4P的生理功能和效应蛋白;并分析了用于治疗人类疾病的选择性PI4K抑制剂的结构基础。在这里,本文主要综述了PI4K抑制剂的结构和酶活性的研究进展。
    Phosphatidylinositol 4-kinases (PI4Ks) could phosphorylate phosphatidylinositol (PI) to produce phosphatidylinositol 4-phosphate (PI4P) and maintain its metabolic balance and location. PI4P, the most abundant monophosphate inositol in eukaryotic cells, is a precursor of higher phosphoinositols and an essential substrate for the PLC/PKC and PI3K/Akt signaling pathways. PI4Ks regulate vesicle transport, signal transduction, cytokinesis, and cell unity, and are involved in various physiological and pathological processes, including infection and growth of parasites such as Plasmodium and Cryptosporidium, replication and survival of RNA viruses, and the development of tumors and nervous system diseases. The development of novel drugs targeting PI4Ks and PI4P has been the focus of the research and clinical application of drugs, especially in recent years. In particular, PI4K inhibitors have made great progress in the treatment of malaria and cryptosporidiosis. We describe the biological characteristics of PI4Ks; summarize the physiological functions and effector proteins of PI4P; and analyze the structural basis of selective PI4K inhibitors for the treatment of human diseases in this review. Herein, this review mainly summarizes the developments in the structure and enzyme activity of PI4K inhibitors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞质空泡化相关细胞死亡,被称为瘤,为癌症治疗提供了一种有希望的非凋亡方法。在这项研究中,我们概述了合成和评价的有效的甲基苯中毒诱导化合物。这些化合物选择性诱导细胞死亡,以HeLa和MDA-MB-231细胞中广泛的细胞质空泡为特征。值得注意的是,化合物L22表现出与PIKfyve激酶的显着相互作用,Kd值为0.47nM,效力超过阳性对照D-13和MOMIPP。此外,重要的是要强调,由化合物L22诱导的细胞死亡明确归因于细胞凋亡,因为它不同于细胞凋亡,坏死,或自噬。重要的是,口服时,L22在HeLa异种移植模型中有效抑制肿瘤生长,而没有任何明显的毒性迹象。这些结果强调了L22的潜力,它是深入研究甲基苯中毒机制的有价值的工具,也是指导结构优化的有前途的先导化合物。
    Cytoplasmic vacuolation-associated cell death, known as methuosis, offers a promising nonapoptotic approach for cancer treatment. In this study, we outline the synthesis and evaluation of potent methuosis-inducing compounds. These compounds selectively induce cell death, characterized by extensive cytoplasmic vacuolation in HeLa and MDA-MB-231 cells. Notably, compound L22 exhibited a remarkable interaction with PIKfyve kinase, boasting a Kd value of 0.47 nM, surpassing the positive controls D-13 and MOMIPP in potency. Furthermore, it is important to highlight that cell death induced by compound L22 is unequivocally attributed to methuosis as it differs from apoptosis, necrosis, or autophagy. Importantly, when administered orally, L22 effectively inhibited tumor growth in a HeLa xenograft model without any apparent signs of toxicity. These results underscore the potential of L22 as a valuable tool for in-depth investigations into the mechanisms of methuosis and as a promising lead compound to guide structural optimization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    磷脂酰肌醇4-磷酸5-激酶(PIP5K)是真核生物中产生信号脂质磷脂酰肌醇4,5-双磷酸[PtdIns(4,5)P2]的关键酶。尽管据报道PIP5K基因参与花粉管的萌发和生长,PIP5K在这些过程中的重要作用尚不清楚.这里,我们对拟南芥PIP5K4,PIP5K5和PIP5K6基因进行了全面的遗传分析,并揭示了它们的冗余功能对于花粉萌发至关重要。具有pip5k4pip5k5pip5k6三重突变的花粉是不育的,而花粉萌发效率和花粉管生长在pip5k6单突变体中降低,在pip5k4pip5k6和pip5pip5k6双突变体中进一步降低。YFP-融合蛋白,PIP5K4-YFP,PIP5K5-YFP,和PIP5K6-YFP,可以挽救三重突变花粉的不育,在发芽之前,优先定位在质膜上的三酚酸盐孔径区域和未来的发芽部位。三突变体花粉粒在发芽条件下,其中PtdIns(4,5)P2荧光标记蛋白2xmCHERRY-2xPHPLC的时空定位在野生型中被废除,表现出花粉壁的膨胀和破裂,但既不是显眼的突出部位,也不是用于发芽的细胞壁材料的特定部位沉积。这些数据表明,PIP5K4-6及其产物PtdIns(4,5)P2是花粉萌发所必需的,可能是通过建立花粉粒中的发芽极性。
    Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) is a key enzyme producing the signaling lipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 ] in eukaryotes. Although PIP5K genes are reported to be involved in pollen tube germination and growth, the essential roles of PIP5K in these processes remain unclear. Here, we performed a comprehensive genetic analysis of the Arabidopsis thaliana PIP5K4, PIP5K5, and PIP5K6 genes and revealed that their redundant function is essential for pollen germination. Pollen with the pip5k4pip5k5pip5k6 triple mutation was sterile, while pollen germination efficiency and pollen tube growth were reduced in the pip5k6 single mutant and further reduced in the pip5k4pip5k6 and pip5k5pip5k6 double mutants. YFP-fusion proteins, PIP5K4-YFP, PIP5K5-YFP, and PIP5K6-YFP, which could rescue the sterility of the triple mutant pollen, preferentially localized to the tricolpate aperture area and the future germination site on the plasma membrane prior to germination. Triple mutant pollen grains under the germination condition, in which spatiotemporal localization of the PtdIns(4,5)P2 fluorescent marker protein 2xmCHERRY-2xPHPLC as seen in the wild type was abolished, exhibited swelling and rupture of the pollen wall, but neither the conspicuous protruding site nor site-specific deposition of cell wall materials for germination. These data indicate that PIP5K4-6 and their product PtdIns(4,5)P2 are essential for pollen germination, possibly through the establishment of the germination polarity in a pollen grain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    氧化固醇结合蛋白(OSBP)及其相关蛋白(ORP)是介导非囊泡脂质转运的脂质转移蛋白(LTPs)家族。ORP9和ORP10,OSBP/ORPs家族的成员,位于内质网(ER)-反式高尔基网络(TGN)膜接触位点(MCSs)。尚不清楚它们如何介导脂质运输。在这项工作中,我们发现ORP9和ORP10通过分子间卷曲螺旋(CC)结构域-CC结构域相互作用形成二元复合物。ORP9和ORP10的PH结构域与磷脂酰肌醇4-磷酸(PI4P)特别相互作用,调解TGN目标。ORP9-ORP10复合物在调节TGN的PI4P水平中起关键作用。使用体外重建试验,我们观察到,虽然全长ORP9在两个并列的膜之间有效地转移了PI4P,ORP10进一步加速了脂质转移动力学。有趣的是,我们的数据显示ORP9和ORP10的PH结构域同时参与膜连接,而ORP9和ORP10的ORD是脂质转运所必需的。此外,我们的数据显示ORP9和ORP10的消耗导致囊泡向质膜(PM)的转运增加.这些发现表明ORP9和ORP10通过CC域形成二元复合物,维持ER-TGNMCSs的PI4P稳态并调节囊泡运输。
    Oxysterol-binding protein (OSBP) and its related proteins (ORPs) are a family of lipid transfer proteins (LTPs) that mediate non-vesicular lipid transport. ORP9 and ORP10, members of the OSBP/ORPs family, are located at the endoplasmic reticulum (ER)-trans-Golgi network (TGN) membrane contact sites (MCSs). It remained unclear how they mediate lipid transport. In this work, we discovered that ORP9 and ORP10 form a binary complex through intermolecular coiled-coil (CC) domain-CC domain interaction. The PH domains of ORP9 and ORP10 specially interact with phosphatidylinositol 4-phosphate (PI4P), mediating the TGN targeting. The ORP9-ORP10 complex plays a critical role in regulating PI4P levels at the TGN. Using in vitro reconstitution assays, we observed that while full-length ORP9 efficiently transferred PI4P between two apposed membranes, the lipid transfer kinetics was further accelerated by ORP10. Interestingly, our data showed that the PH domains of ORP9 and ORP10 participate in membrane tethering simultaneously, whereas ORDs of both ORP9 and ORP10 are required for lipid transport. Furthermore, our data showed that the depletion of ORP9 and ORP10 led to increased vesicle transport to the plasma membrane (PM). These findings demonstrate that ORP9 and ORP10 form a binary complex through the CC domains, maintaining PI4P homeostasis at ER-TGN MCSs and regulating vesicle trafficking.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Arap3,一种用于小GTPasesArf6和RhoA的双重GTPase激活蛋白(GAP),在调节广泛的生物过程中起着关键作用,包括癌细胞的侵袭和转移。已知Arap3是可以直接结合PI(3,4,5)P3的PI3K效应物,并且PI(3,4,5)P3介导的质膜募集对于其功能至关重要。然而,该蛋白识别PI(3,4,5)P3的分子机制尚不清楚。这里,使用脂质体下拉和表面等离子体共振(SPR)分析,我们发现N端第一pleckstrin同源(PH)结构域(Arap3-PH1)可以与PI(3,4,5)P3相互作用,亲和力较低,与PI(4,5)P2。要了解Arap3-PH1和磷酸肌醇(PIP)脂质如何相互作用,我们解决了apo形式的Arap3-PH1的晶体结构,并与diC4-PI(3,4,5)P3配合物。我们还通过核磁共振(NMR)光谱表征了Arap3-PH1与溶液中的diC4-PI(3,4,5)P3和diC4-PI(4,5)P2的相互作用。此外,我们发现Arap3的过表达可以在体外抑制乳腺癌细胞的侵袭,并且PH1结构域的PIPs结合能力对于该功能是必需的。
    Arap3, a dual GTPase-activating protein (GAP) for the small GTPases Arf6 and RhoA, plays key roles in regulating a wide range of biological processes, including cancer cell invasion and metastasis. It is known that Arap3 is a PI3K effector that can bind directly to PI(3,4,5)P3, and the PI(3,4,5)P3-mediated plasma membrane recruitment is crucial for its function. However, the molecular mechanism of how the protein recognizes PI(3,4,5)P3 remains unclear. Here, using liposome pull-down and surface plasmon resonance (SPR) analysis, we found that the N-terminal first pleckstrin homology (PH) domain (Arap3-PH1) can interact with PI(3,4,5)P3 and, with lower affinity, with PI(4,5)P2. To understand how Arap3-PH1 and phosphoinositide (PIP) lipids interact, we solved the crystal structure of the Arap3-PH1 in the apo form and complex with diC4-PI(3,4,5)P3. We also characterized the interactions of Arap3-PH1 with diC4-PI(3,4,5)P3 and diC4-PI(4,5)P2 in solution by nuclear magnetic resonance (NMR) spectroscopy. Furthermore, we found overexpression of Arap3 could inhibit breast cancer cell invasion in vitro, and the PIPs-binding ability of the PH1 domain is essential for this function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    磷脂酰肌醇(3,5)-二磷酸[PtdIns(3,5)P2]是参与内-溶酶体稳态的关键信号磷脂。它由PIKfyve组成的蛋白质复合物合成,Vac14和图4。PtdIns(3,5)P2合成缺陷是许多人类神经系统疾病的基础,包括Charcot-Marie-Tooth病,儿童期进行性肌张力障碍,和其他人。然而,PtdIns(3,5)P2的神经元特异性功能仍然知之甚少。在这里,我们显示PtdIns(3,5)P2途径是维持神经突厚度所必需的。使用药理学抑制剂或RNA沉默抑制PIKfyve活性导致神经突厚度降低。我们进一步发现,PtdIns(3,5)P2对神经突厚度的调节是由神经元特异性内体蛋白NSG1/NEEP21介导的。NSG1表达的敲低也导致更薄的神经突。mCherry标记的NSG1共定位并与PtdIns(3,5)P2机制中的蛋白质相互作用。通过过表达图4或PtdIns(3,5)P2结合结构域对PtdIns(3,5)P2动力学的扰动导致NSG1错误定位到非内体位置,抑制PtdIns(3,5)P2合成导致EEA1阳性早期内体中NSG1的积累。重要的是,NSG1的过表达挽救了PtdIns(3,5)P2缺陷的CAD神经元和原代皮层神经元的神经突变薄。我们的研究揭示了PtdIns(3,5)P2在神经元形态发生中的作用,揭示了PtdIns(3,5)P2相关神经病的发病机制的新方面。我们还确定NSG1是PtdIns(3,5)P2的重要下游蛋白,它可能为神经系统疾病提供新的治疗靶点。
    Phosphatidylinositol (3,5)-bisphosphate [PtdIns(3,5)P2] is a critical signaling phospholipid involved in endolysosome homeostasis. It is synthesized by a protein complex composed of PIKfyve, Vac14, and Fig4. Defects in PtdIns(3,5)P2 synthesis underlie a number of human neurological disorders, including Charcot-Marie-Tooth disease, child onset progressive dystonia, and others. However, neuron-specific functions of PtdIns(3,5)P2 remain less understood. Here, we show that PtdIns(3,5)P2 pathway is required to maintain neurite thickness. Suppression of PIKfyve activities using either pharmacological inhibitors or RNA silencing resulted in decreased neurite thickness. We further find that the regulation of neurite thickness by PtdIns(3,5)P2 is mediated by NSG1/NEEP21, a neuron-specific endosomal protein. Knockdown of NSG1 expression also led to thinner neurites. mCherry-tagged NSG1 colocalized and interacted with proteins in the PtdIns(3,5)P2 machinery. Perturbation of PtdIns(3,5)P2 dynamics by overexpressing Fig4 or a PtdIns(3,5)P2-binding domain resulted in mislocalization of NSG1 to nonendosomal locations, and suppressing PtdIns(3,5)P2 synthesis resulted in an accumulation of NSG1 in EEA1-positive early endosomes. Importantly, overexpression of NSG1 rescued neurite thinning in PtdIns(3,5)P2-deficient CAD neurons and primary cortical neurons. Our study uncovered the role of PtdIns(3,5)P2 in the morphogenesis of neurons, which revealed a novel aspect of the pathogenesis of PtdIns(3,5)P2-related neuropathies. We also identified NSG1 as an important downstream protein of PtdIns(3,5)P2, which may provide a novel therapeutic target in neurological diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号