Pathophysiological

病理生理
  • 文章类型: Journal Article
    过敏性鼻炎是一种常见的过敏性疾病,对身体健康有深远的影响。近年来,越来越多的人转向过敏性疾病,如过敏性鼻炎,过敏性哮喘,过敏性皮炎等。在过敏性鼻炎的发病率中,涵盖所有年龄。临床上常见的变应性鼻炎治疗方法有药物和免疫治疗,但这些疗法有一定的局限性。因此,迫切需要一种有效和经济的AR治疗方法。针灸在临床上广泛应用于各种疾病的治疗,但针刺治疗过敏性鼻炎(AR)的效果显著,针刺治疗AR的机制也是一个热点。针灸是传统的中医治疗方法之一,通过在皮肤上的特定位置按压针或其他方式以产生特殊感觉来达到治疗效果。其中,针灸,作为一种流行的治疗方法,引起了越来越多的关注。在这次审查中,我们概述了目前对针灸和AR的理解,以及目前研究针灸治疗AR的疗效和安全性的研究。
    Allergic rhinitis is a prevalent allergic diseases and has a profound impact on physical well-being. In recent years, more and more people have changed to allergic diseases, such as allergic rhinitis, allergic asthma, allergic dermatitis and so on. In the incidence of allergic rhinitis, covering all ages. The common clinical treatment of allergic rhinitis are drugs and immunotherapy, but these therapies have certain limitations. Therefore, an effective and economical treatment for AR is urgently needed. Acupuncture are widely used in the clinical treatment of various diseases, but the effect of acupuncture in the treatment of allergic rhinitis (AR) is significant, and the mechanism of acupuncture in the treatment of AR is also a hot spot. Acupuncture is one of the traditional treatment methods of traditional Chinese medicine, which achieves therapeutic effect by pressing a needle or other means at a specific location on the skin to produce a special sensation. Among them, acupuncture, as a popular treatment method, has attracted more and more attention. In this review, we provide an overview of the current understanding of acupuncture and AR, as well as current studies investigating the efficacy and safety of acupuncture for AR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    机械敏感性压电离子通道于2010年首次在小鼠神经母细胞瘤细胞系中报道,开辟了研究真核机械激活通道的组成和功能的新领域。在过去的十年里,在许多物种中发现了压电离子通道,如细菌,果蝇,和哺乳动物。在哺乳动物中,基本的生命活动,比如触觉,本体感受,听力,血管发育,和血压调节,依赖于压电离子通道的激活。累积证据表明,压电离子通道在肺血管发育和功能以及肺炎等疾病中起主要作用,肺动脉高压,呼吸暂停,和其他肺部相关疾病。在这次审查中,我们专注于报道组织中Piezos特定功能的研究,并强调其缺失或功能突变对呼吸系统的生理和病理影响.
    Mechanosensitive Piezo ion channels were first reported in 2010 in a mouse neuroblastoma cell line, opening up a new field for studying the composition and function of eukaryotic mechanically activated channels. During the past decade, Piezo ion channels were identified in many species, such as bacteria, Drosophila, and mammals. In mammals, basic life activities, such as the sense of touch, proprioception, hearing, vascular development, and blood pressure regulation, depend on the activation of Piezo ion channels. Cumulative evidence suggests that Piezo ion channels play a major role in lung vascular development and function and diseases like pneumonia, pulmonary hypertension, apnea, and other lung-related diseases. In this review, we focused on studies that reported specific functions of Piezos in tissues and emphasized the physiological and pathological effects of their absence or functional mutations on the respiratory system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    A large number of studies in China and other countries have confirmed that circularHIPK3 (circHIPK3) plays an important role in the pathophysiological processes of various diseases. Through the action of sponge miRNA (miR), circHIPK3 regulates cell proliferation, differentiation, and migration, and plays a key role in disease processes. By referring to a large number of research reports, this article explores the specific functional role of circHIPK3 in fibrotic diseases, cancer, and other diseases. This review aims to clarify the role of circHIPK3 in disease processes in order to aid further studies into the specific pathogenesis and clinical diagnosis of various diseases and provide new ideas for treatments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Epigenetic mechanisms, such as acetylation, methylation, and succinylation, play pivotal roles in the regulation of multiple normal biological processes, including neuron regulation, hematopoiesis, bone cell maturation, and metabolism. In addition, epigenetic mechanisms are closely associated with the pathological processes of various diseases, such as metabolic diseases, autoimmune diseases and cancers. Epigenetic changes may precede genetic mutation, so research on epigenetic changes and regulation may be important for the early detection and diagnosis of disease. Histone deacetylase11 (HDAC11) is the newest member of the histone deacetylase (HDAC) family and the only class IV histone deacetylase. HDAC11 has different expression levels and biological functions in different systems of the human body and is among the top 1 to 4% of genes overexpressed in cancers, such as breast cancer, hepatocellular carcinoma and renal pelvis urothelial carcinoma. This article analyzes the role and mechanism of HDAC11 in disease, especially in tumorigenesis, in an attempt to provide new ideas for clinical and basic research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Voltage-gated sodium channels (VGSCs) are responsible for the generation and propagation of action potentials in most excitable cells. In general, a VGSC consists of one pore-forming α subunit and two auxiliary β subunits. Genetic alterations in VGSCs genes, including both α and β subunits, are considered to be associated with epileptogenesis as well as seizures. This review aims to summarize the mutations in VGSC α subunits in epilepsy, particularly the pathophysiological and pharmacological properties of relevant VGSC mutants.
    The review of epilepsy-associated VGSC α subunits mutants may not only contribute to the understanding of disease mechanism and genetic modifiers, but also provide potential theoretical targets for the precision and individualized medicine for epilepsy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Autophagy is an important homeostatic cellular recycling mechanism responsible for degrading unnecessary or dysfunctional cellular organelles and proteins in all living cells. In addition to its vital homeostatic role, this degradation pathway also involves in various human disorders, including metabolic conditions, neurodegenerative diseases, cancers and infectious diseases. Therefore, the comprehensive understanding of autophagy process, autophagy-related modulators and corresponding pathway and disease information will be of great help for identifying the new autophagy modulators, potential drug candidates, new diagnostic and therapeutic targets. In recent years, some autophagy databases providing structural and functional information were developed, but the specific databases covering autophagy modulator (proteins, chemicals and microRNAs)-related target, pathway and disease information do not exist. Hence, we developed an online resource, Human Autophagy Modulator Database (HAMdb, http://hamdb.scbdd.com ), to provide researchers related pathway and disease information as many as possible. HAMdb contains 796 proteins, 841 chemicals and 132 microRNAs. Their specific effects on autophagy, physicochemical information, biological information and disease information were manually collected and compiled. Additionally, lots of external links were available for more information covering extensive biomedical knowledge. HAMdb provides a user-friendly interface to query, search, browse autophagy modulators and their comprehensive related information. HAMdb will help researchers understand the whole autophagy process and provide detailed information about related diseases. Furthermore, it can give hints for the identification of new diagnostic and therapeutic targets and the discovery of new autophagy modulators. In a word, we hope that HAMdb has the potential to promote the autophagy research in pharmacological and pathophysiological area.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号