PTT

PTT
  • 文章类型: Journal Article
    基于光敏剂的光疗,包括光动力疗法(PDT)和光热疗法(PTT),为时空精确的肿瘤消融提供安全的治疗方式。光子被吸收后,PDT通过产生活性氧(ROS)产生局部化学损伤,而PTT引起局部热损伤。然而,PDT仍然面临着肿瘤缺氧的挑战,而PTT遇到与耐热性和潜在过热相关的问题。PDT和PTT的组合显示出作为有效抗癌策略的巨大潜力。通过使用精心设计的光疗试剂针对溶酶体进行联合光疗,可以诱导癌细胞的快速功能障碍和细胞死亡,显示出癌症治疗的希望。在这里,设计并合成了两个具有四苯基乙烯(TPE)部分的α-α-连接的双BODIPY。这些TPE取代的双BODIPY将吸收扩展到NIR范围(λmaxabs/λmaxem〜740/810nm),并赋予聚集诱导发射(AIE)活性(λmaxem〜912nm)。此外,这些双BODIPY与表面活性剂F-127自组装成纳米颗粒(NP),在溶液和细胞环境中有效地产生ROS(1O2和•OH),并表现出优异的光热转换效率(η〜68.3%)以及出色的光热稳定性。更重要的是,这些NP在细胞和小鼠模型中显示溶酶体靶向和显着的肿瘤消融,表明他们在精确肿瘤治疗中的潜力。
    Photosensitizer-based phototherapies, including photodynamic therapy (PDT) and photothermal therapy (PTT), offer safe treatment modalities for tumor ablation with spatiotemporal precision. After photons are absorbed, PDT creates localized chemical damage by generating reactive oxygen species (ROS), while PTT induces localized thermal damage. However, PDT still faces hypoxic tumor challenges, while PTT encounters issues related to heat resistance and potential overheating. The combination of PDT and PTT shows great potential as an effective anticancer strategy. By targeting lysosomes with carefully designed phototherapeutic reagents for combined phototherapy, rapid dysfunction and cell death in cancer cells can be induced, showing promise for cancer treatment. Herein, two α-α-linked bisBODIPYs with tetraphenylethene (TPE) moieties are designed and synthesized. These TPE-substituted bisBODIPYs expand the absorption into NIR range (λmaxabs/λmaxem ∼ 740/810 nm) and confer aggregation-induced emission (AIE) activity (λmaxem ∼ 912 nm). Moreover, these bisBODIPYs self-assemble with surfactant F-127 into nanoparticles (NPs), which efficiently generate ROS (1O2 and •OH) in both solution and cellular environments and demonstrate superior photothermal conversion efficiencies (η ∼ 68.3%) along with exceptional photothermal stability. More importantly, these NPs showed lysosomal targeting and remarkable tumor ablation in cellular and murine models, indicating their potential in precision tumor therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    为了提高肿瘤治疗的有效性,减少药物的毒副作用,我们通过盐酸小檗碱和IR780的非共价相互作用形成了无载体多功能纳米颗粒(BINP)。BINP具有促进细胞凋亡的协同作用,抑制肿瘤的增殖和转移,和光疗治疗。可以通过荧光成像监测BINPs在体内对肿瘤部位的分散和被动靶向能力保留(EPR)效应。此外,BINP表现出有效的活性氧(ROS)产生和光热转化能力,光动力疗法(PDT),和光热疗法(PTT)。重要的是,BINPs通过AMPK/PI3K/AKT信号通路抑制肿瘤抑制,从而抑制肿瘤增殖和转移。BINPs不仅具有有效的体内多模式治疗效果,而且具有良好的生物安全性和潜在的临床应用。
    In order to improve the effectiveness of tumor treatment and reduce the toxic side effects of drugs, we formed carrier-free multifunctional nanoparticles (BI NPs) by noncovalent interaction of berberine hydrochloride and IR780. BI NPs possessed the synergistic effects of promoting apoptosis, inhibiting proliferation and metastasis of tumors, and phototherapeutic treatment. Dispersive and passive targeting ability retention (EPR) effects of BI NPs on tumor sites in vivo could be monitored by fluorescence imaging. In addition, BI NPs exhibited effective reactive oxygen species (ROS) generation and photothermal conversion capabilities, photodynamic therapy (PDT), and photothermal therapy (PTT). Importantly, BI NPs inhibit tumor suppression through the AMPK/PI3K/AKT signaling pathway to inhibit tumor proliferation and metastasis. BI NPs not only have efficient in vivo multimodal therapeutic effects but also have good biosafety and potential clinical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    糖尿病伤口的高血糖微环境促进细菌增殖,导致持续感染和伤口愈合延迟。这对人类健康构成重大威胁,需要开发新的纳米药物可视化平台。在这项研究中,我们设计并合成了靶向肽和透明质酸修饰的级联纳米系统,用于糖尿病感染治疗。纳米系统能够使用LL-37靶向感染部位,并在伤口感染的微环境中,纳米系统的透明质酸外壳被内源性透明质酸酶降解。这种精确的降解在细菌表面释放出一系列纳米酶,有效地破坏了它们的细胞骨架.此外,纳米酶中的金属提供了光热效应,加速伤口愈合.级联纳米可视化平台在体外抗菌测定和体内糖尿病感染模型中均显示出优异的杀菌功效。总之,这个纳米系统采用了多种方法,包括靶向,酶催化疗法,光热疗法,和化学动力学疗法来杀死细菌并促进愈合。Ag@Pt-Au-LYZ/HA-LL-37制剂显示出治疗糖尿病伤口的巨大潜力。
    The high-glycemic microenvironment of diabetic wounds promotes bacterial proliferation, leading to persistent infections and delayed wound healing. This poses a significant threat to human health, necessitating the development of new nanodrug visualization platforms. In this study, we designed and synthesized cascade nano-systems modified with targeted peptide and hyaluronic acid for diabetic infection therapy. The nano-systems were able to target the site of infection using LL-37, and in the microenvironment of wound infection, the hyaluronic acid shell of the nano-systems was degraded by endogenous hyaluronidase. This precise degradation released a cascade of nano-enzymes on the surface of the bacteria, effectively destroying their cytoskeleton. Additionally, the metals in the nano-enzymes provided a photo-thermal effect, accelerating wound healing. The cascade nano-visualization platform demonstrated excellent bactericidal efficacy in both in vitro antimicrobial assays and in vivo diabetic infection models. In conclusion, this nano-system employs multiple approaches including targeting, enzyme-catalyzed therapy, photothermal therapy, and chemodynamic therapy to kill bacteria and promote healing. The Ag@Pt-Au-LYZ/HA-LL-37 formulation shows great potential for the treatment of diabetic wounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    骨肉瘤(OS)的缺氧肿瘤微环境(TME)是氧依赖性光动力疗法(PDT)的致命弱点,扭转缺氧面临巨大挑战。在这里,我们提出了“减少O2消耗并扩大来源”的双重策略,并构造了超小型IrO2@BSA-ATO纳米发电机(NG),以减少O2消耗并同时提高O2供应。作为O2NGs,内源性过氧化氢酶(CAT)活性可以精确分解过表达的H2O2,原位产生O2,使外源性O2输注。此外,细胞呼吸抑制剂atovaquone(ATO)将在肿瘤部位,有效抑制细胞呼吸,提高氧含量,以保持内源性O2。因此,IrO2@BSA-ATONG以双重方式系统地增加肿瘤氧合,并显着增强PDT的抗肿瘤功效。此外,非凡的光热转换效率允许在光声引导下实施精确的光热治疗(PTT)。在单次激光照射下,这种协同的PDT,PTT,IrO2@BSA-ATONG的以下免疫抑制调节性能在体外和体内均实现了优异的肿瘤协同根除能力。一起来看,这项研究提出了一种创新的双重策略来解决严重的缺氧问题,这种微环境可调节的IrO2@BSA-ATONG作为多功能治疗平台显示出OS治疗的巨大潜力。
    The hypoxic tumor microenvironment (TME) of osteosarcoma (OS) is the Achilles\' heel of oxygen-dependent photodynamic therapy (PDT), and tremendous challenges are confronted to reverse the hypoxia. Herein, we proposed a \"reducing expenditure of O2 and broadening sources\" dual-strategy and constructed ultrasmall IrO2@BSA-ATO nanogenerators (NGs) for decreasing the O2-consumption and elevating the O2-supply simultaneously. As O2 NGs, the intrinsic catalase (CAT) activity could precisely decompose the overexpressed H2O2 to produce O2 in situ, enabling exogenous O2 infusion. Moreover, the cell respiration inhibitor atovaquone (ATO) would be at the tumor sites, effectively inhibiting cell respiration and elevating oxygen content for endogenous O2 conservation. As a result, IrO2@BSA-ATO NGs systematically increase tumor oxygenation in dual ways and significantly enhance the antitumor efficacy of PDT. Moreover, the extraordinary photothermal conversion efficiency allows the implementation of precise photothermal therapy (PTT) under photoacoustic guidance. Upon a single laser irradiation, this synergistic PDT, PTT, and the following immunosuppression regulation performance of IrO2@BSA-ATO NGs achieved a superior tumor cooperative eradicating capability both in vitro and in vivo. Taken together, this study proposes an innovative dual-strategy to address the serious hypoxia problem, and this microenvironment-regulable IrO2@BSA-ATO NGs as a multifunctional theranostics platform shows great potential for OS therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    高碳硬线钢主要用于制造汽车和飞机的轮胎胎圈,钒(V)微合金化是调节高碳硬钢显微组织的重要手段。使用扫描电子显微镜(SEM),X射线衍射(XRD)和透射电子显微镜(TEM),对连续冷却高碳钢的显微组织和析出相进行了表征,和钒含量,碳扩散系数,并计算了临界降水温度。结果表明,随着V含量增加到0.06wt。%,实验钢中珠光体的层间间距(ILS)降至0.110μm,实验钢中的碳扩散系数降至0.98×10-3cm2·s-1。实验钢中的珠光体含量为0.02wt。%V在5°C·s-1的冷却速率下达到最大值,并且在10°C·s-1的冷却速率下在实验钢中观察到少量贝氏体。析出相为VC,直径为〜24.73nm,铁素体与VC的失配率为5.02%,在两者之间形成半相干的界面。原子逐渐调整其位置,以允许VC沿铁素体方向生长。随着V含量增加到0.06wt。%,降水-温度-时间曲线(PTT)向左移动,和均相成核的临界成核温度,晶界成核,位错线成核从570.6、676.9和692.4°C增加到634.6、748.5和755.5°C,分别。
    High-carbon hardline steels are primarily used for the manufacture of tire beads for both automobiles and aircraft, and vanadium (V) microalloying is an important means of adjusting the microstructure of high-carbon hardline steels. Using scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM), the microstructure and precipitation phases of continuous cooled high-carbon steels were characterized, and the vanadium content, carbon diffusion coefficient, and critical precipitation temperature were calculated. The results showed that as the V content increased to 0.06 wt.%, the interlamellar spacing (ILS) of the pearlite in the experimental steel decreased to 0.110 μm, and the carbon diffusion coefficient in the experimental steel decreased to 0.98 × 10-3 cm2·s-1. The pearlite content in the experimental steel with 0.02 wt.% V reached its maximum at a cooling rate of 5 °C·s-1, and a small amount of bainite was observed in the experimental steel at a cooling rate of 10 °C·s-1. The precipitated phase was VC with a diameter of ~24.73 nm, and the misfit between ferrite and VC was 5.02%, forming a semi-coherent interface between the two. Atoms gradually adjust their positions to allow the growth of VC along the ferrite direction. As the V content increased to 0.06 wt.%, the precipitation-temperature-time curve (PTT) shifted to the left, and the critical nucleation temperature for homogeneous nucleation, grain boundary nucleation, and dislocation line nucleation increased from 570.6, 676.9, and 692.4 °C to 634.6, 748.5, and 755.5 °C, respectively.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在各种癌症的治疗中,光动力疗法(PDT)作为一种有效的治疗方式已被广泛研究。作为传统化疗的潜在替代方案,由于光敏剂的低活性氧(ROS)产率,PDT受到限制。在这里,开发了包含介孔Fe3O4@TiO2微球的纳米平台,用于近红外(NIR)-光增强化学动力学疗法(CDT)和PDT。二氧化钛(TiO2)已被证明是一种非常有效的PDT剂;然而,缺氧肿瘤微环境部分影响其体内PDT疗效。一种类似过氧化物酶的酶,Fe3O4催化细胞质中H2O2的分解以产生O2,帮助克服肿瘤缺氧并增加响应于PDT的ROS产生。此外,Fe3O4中的Fe2可以催化H2O2分解,在肿瘤细胞内产生细胞毒性羟基自由基,这将导致肿瘤CDT。Fe3O4@TiO2的光子热疗不仅可以直接损伤肿瘤,而且可以提高Fe3O4的CDT效率。通过成功装载化疗药物DOX,癌症杀伤效力已被最大化,使用近红外激发和轻微酸化可以有效释放。此外,纳米平台具有高饱和磁化强度(20emu/g),使其适用于磁瞄准。体外结果表明,Fe3O4@TiO2/DOX纳米平台与CDT/PDT/PTT/化疗联合应用具有良好的生物相容性以及对肿瘤的协同作用。
    In the treatment of various cancers, photodynamic therapy (PDT) has been extensively studied as an effective therapeutic modality. As a potential alternative to conventional chemotherapy, PDT has been limited due to the low Reactive Oxygen Species (ROS) yield of photosensitisers. Herein, a nanoplatform containing mesoporous Fe3O4@TiO2 microspheres was developed for near-infrared (NIR)-light-enhanced chemodynamical therapy (CDT) and PDT. Titanium dioxide (TiO2) has been shown to be a very effective PDT agent; however, the hypoxic tumour microenvironment partly affects its in vivo PDT efficacy. A peroxidase-like enzyme, Fe3O4, catalyses the decomposition of H2O2 in the cytoplasm to produce O2, helping overcome tumour hypoxia and increase ROS production in response to PDT. Moreover, Fe2+ in Fe3O4 could catalyse H2O2 decomposition to produce cytotoxic hydroxyl radicals within tumour cells, which would result in tumour CDT. The photonic hyperthermia of Fe3O4@TiO2 could not only directly damage the tumour but also improve the efficiency of CDT from Fe3O4. Cancer-killing effectiveness has been maximised by successfully loading the chemotherapeutic drug DOX, which can be released efficiently using NIR excitation and slight acidification. Moreover, the nanoplatform has high saturation magnetisation (20 emu/g), making it suitable for magnetic targeting. The in vitro results show that the Fe3O4@TiO2/DOX nanoplatforms exhibited good biocompatibility as well as synergetic effects against tumours in combination with CDT/PDT/PTT/chemotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胃癌的复发和转移是治疗的主要挑战。癌症干细胞(CSC)的存在是当前癌症治疗成功的主要障碍。常导致治疗耐药和肿瘤复发转移。因此,重要的是制定有效的策略来根除CSC。在这项研究中,我们通过成功合成负载有IR780(光敏剂)和EN4(c-Myc抑制剂)的纳米脂质体,开发了光热疗法(PTT)和胃癌干细胞(GCSCs)抑制的联合治疗策略.纳米复合材料是生物相容的并且表现出优异的光声(PA)成像特性。在激光照射下,IR780介导的PTT有效和快速杀死肿瘤细胞,EN4通过抑制多能转录因子c-Myc的表达和活性,协同抑制GCSCs的自我更新和干性,预防胃癌的肿瘤进展。这种Nano-EN-IR@Lip有望成为整合胃癌诊断的新型临床纳米医学,治疗和预防。
    Recurrence and metastasis of gastric cancer is a major therapeutic challenge for treatment. The presence of cancer stem cells (CSCs) is a major obstacle to the success of current cancer therapy, often leading to treatment resistance and tumor recurrence and metastasis. Therefore, it is important to develop effective strategies to eradicate CSCs. In this study, we developed a combined therapeutic strategy of photothermal therapy (PTT) and gastric cancer stem cells (GCSCs) inhibition by successfully synthesizing nanoliposomes loaded with IR780 (photosensitizer) and EN4 (c-Myc inhibitor). The nanocomposites are biocompatible and exhibit superior photoacoustic (PA) imaging properties. Under laser irradiation, IR780-mediated PTT effectively and rapidly killed tumor cells, while EN4 synergistically inhibited the self-renewal and stemness of GCSCs by suppressing the expression and activity of the pluripotent transcription factor c-Myc, preventing the tumor progression of gastric cancer. This Nano-EN-IR@Lip is expected to be a novel clinical nanomedicine for the integration of gastric cancer diagnosis, treatment and prevention.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    具有高Mn2+配位的纳米平台可以显示高效的T1磁共振成像(MRI)对比增强。在这里,我们首先提出了一种类似地球重力的方法,通过生物矿化方法在Fn的笼结构中生长铂纳米颗粒(PNs)来增强铁蛋白(Fn)和Mn2之间的相互作用。Fn具有良好的生物相容性,可以为PNs提供合适的生长位点。带负电荷的PN对带正电荷的Mn2+有一定的吸引力,通过吸引力提高Fn的Mn2+负载能力,从而实现有效的MRI对比增强。此外,PNs可用于近红外线(NIR)照射下的有效光热治疗(PTT)。NIR照射后,该纳米平台的全身递送显示出明显的MRI对比增强和肿瘤进展抑制,也没有明显的副作用。因此,这种纳米平台有可能有助于纳米治疗的临床转化。本文受版权保护。保留所有权利。
    Nanoplatforms with high Mn2+ coordination can display efficient T1 magnetic resonance imaging (MRI) contrast enhancement. Herein, an earth gravity-like method for enhanced interaction between Ferritin (Fn) and Mn2+ by the growth of platinum nanoparticles (PNs) in Fn\'s cage structure via a biomineralization method is first proposed. Fn has good biocompatibility and can provide a suitable growth site for PNs. PNs with negative charge have certain attraction to Mn2+ with positive charge, improving Fn\'s loading capacity of Mn2+ by attraction force; and thus, achieving efficient MRI contrast enhancement. In addition, PNs can be applied for efficient photothermal therapy (PTT) under near infrared ray (NIR) irradiation. Systemic delivery of this nanoplatform shows obvious MRI contrast enhancement and tumor progression inhibition after NIR irradiation, as well as no obvious side effects. Therefore, this nanoplatform has the potential to contribute to nanotheranostic for clinical transformation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    幽门螺杆菌(H.幽门螺杆菌)感染对抗生素治疗在胃粘液渗透有限的情况下面临越来越大的挑战,多药耐药(MDR),生物膜的形成,和肠道微生物菌群失调。为了解决这些问题,在这里,针对MDR幽门螺杆菌感染的粘液穿透光疗纳米药物(RLs@T780TG)被设计。RLs@T780TG与近红外光敏剂T780T-Gu和阴离子成分鼠李糖脂(RLs)组装在一起,用于深层粘液渗透和光诱导的抗H。幽门螺杆菌的表现。具有优化的合适尺寸,亲水性和弱负表面,RLs@T780TG可有效穿透胃粘液层并靶向炎症部位。随后,在辐照下,RLs@T780TG的结构被破坏,并促进T780T-Gu释放以靶向幽门螺杆菌表面并消融多药耐药(MDR)幽门螺杆菌。在体内,RLs@T780TG光疗对幽门螺杆菌的根除效果令人印象深刻。与抗生素治疗相比,胃部病变明显减轻,肠道细菌平衡受到的影响较小。总之,这项工作为促进体内光疗治疗幽门螺杆菌感染提供了一种潜在的纳米医学设计.
    Helicobacter pylori (H. pylori) infection presents increasing challenges to antibiotic therapies in limited penetration through gastric mucus, multi-drug resistance (MDR), biofilm formation, and intestinal microflora dysbiosis. To address these problems, herein, a mucus-penetrating phototherapeutic nanomedicine (RLs@T780TG) against MDR H. pylori infection is engineered. The RLs@T780TG is assembled with a near-infrared photosensitizer T780T-Gu and an anionic component rhamnolipids (RLs) for deep mucus penetration and light-induced anti-H. pylori performances. With optimized suitable size, hydrophilicity and weak negative surface, the RLs@T780TG can effectively penetrate through the gastric mucus layer and target the inflammatory site. Subsequently, under irradiation, the structure of RLs@T780TG is disrupted and facilitates the T780T-Gu releasing to target the H. pylori surface and ablate multi-drug resistant (MDR) H. pylori. In vivo, RLs@T780TG phototherapy exhibits impressive eradication against H. pylori. The gastric lesions are significantly alleviated and intestinal bacteria balance is less affected than antibiotic treatment. Summarily, this work provides a potential nanomedicine design to facilitate in vivo phototherapy in treatment of H. pylori infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    药物诱导的免疫原性细胞死亡(ICD)可以通过释放激活局部和全身免疫反应的肿瘤相关抗原来有效抑制肿瘤的生长和复发。焦亡已成为诱导ICD的有效手段;然而,开发特异性靶向肿瘤细胞的新型焦亡诱导剂仍然是一个迫切的需求。在这里,我们报道了华蟾素(CS-1),昌苏的主要成分,能有效诱导三阴性乳腺癌(TNBC)细胞的焦亡,使其成为这种肿瘤的潜在治疗剂。然而,CS-1在体内的应用受到系统毒性引起的高剂量/长期使用和非选择性的极大限制。为了解决这些缺点,我们通过将CS-1加载到普鲁士蓝纳米粒子(PBNP)中开发了一种新的纳米药物。纳米药物可以以光热控制的方式释放在PBNP中遗传的CS-1。此外,杂化膜(HM)伪装,以提高该纳米药物的免疫逃逸和肿瘤靶向能力,也是。体外实验表明,化学-光热联合治疗产生了高水平的ICD,最终促进树突状细胞(DC)的成熟。体内抗肿瘤评估进一步表明,该策略不仅有效地抑制MDA-MB-231细胞和带有4T1细胞的模型的原代生长,而且有效地减弱4T1异种移植模型中的远处肿瘤生长。这是通过促进DC成熟在机制上实现的,细胞毒性T淋巴细胞浸润到肿瘤中,和抑制Treg细胞。总之,这项工作通过合理设计使用基于纳米材料的多模态纳米药物,为有效的TNBC治疗提供了一种新策略。
    Drug-induced immunogenic cell death (ICD) can efficiently inhibit tumor growth and recurrence through the release of tumor-associated antigens which activate both local and systemic immune responses. Pyroptosis has emerged as an effective means for inducing ICD; however, the development of novel pyroptosis inducers to specifically target tumor cells remains a pressing requirement. Herein, we report that Cinobufagin (CS-1), a main ingredient of Chansu, can effectively induce pyroptosis of triple-negative breast cancer (TNBC) cells, making it a potential therapeutic agent for this kind of tumor. However, the application of CS-1 in vivo is extremely limited by the high dosage/long-term usage and non-selectivity caused by systemic toxicity. To address these drawbacks, we developed a new nanomedicine by loading CS-1 into Prussian blue nanoparticles (PB NPs). The nanomedicine can release CS-1 in a photothermal-controlled manner inherited in PB NPs. Furthermore, hybrid membrane (HM) camouflage was adopted to improve the immune escape and tumor-targeting ability of this nanomedicine, as well. In vitro assays demonstrated that the chemo-photothermal combination treatment produced high-level ICD, ultimately fostering the maturation of dendritic cells (DCs). In vivo anti-tumor assessments further indicated that this strategy not only efficiently inhibited primary growth of MDA-MB-231 cells and 4T1 cells-bearing models but also efficiently attenuated distant tumor growth in 4T1 xenograft model. This was mechanistically achieved throuh the promotion of DCs maturation, infiltration of cytotoxic T lymphocyte into the tumor, and the inhibition of Treg cells. In summary, this work provides a novel strategy for efficient TNBC therapy by using nanomaterials-based multimodal nanomedicine through rational design.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号