Multiplexed detection

多路检测
  • 文章类型: Journal Article
    超灵敏分析的主要挑战是以高精度并行高效测定不同的目标单分子。在这里,我们开发了一种定量的氟电化学成像方法,用于使用SiC纳米膜修饰的氧化铟锡透明电极进行直接多路单分子计数。纳米膜可以在较低的电势范围内通过质子耦合的电子转移来控制局部pH,并在较高的施加电势下进一步诱导染料分子的直接电化学氧化。因此,可以在相同的荧光通道内区分具有不同pH值和氧化还原行为的固定单分子的氟电化学响应。这种方法产生单分子的非扩增直接计数,如在皮摩尔范围内的出色线性响应所示。七种不同的随机混合染料的成功区分强调了所提出的方法在高精度测定单染料分子中的多功能性和有效性,为各种应用的高度并行的单分子检测铺平了道路。
    A major challenge for ultrasensitive analysis is the high-efficiency determination of different target single molecules in parallel with high accuracy. Herein, we developed a quantitative fluoro-electrochemical imaging approach for direct multiplexed single-molecule counting with a SiC-nanofilm-modified indium tin oxide transparent electrode. The nanofilm could control local pH through proton-coupled electron transfer in a lower potential range and further induce direct electrochemical oxidation of the dye molecules with a higher applied potential. The fluoro-electrochemical responses of immobilized single molecules with different pH values and redox behaviors could thus be distinguished within the same fluorescence channels. This method yields nonamplified direct counting of single molecules, as indicated by excellent linear responses in the picomolar range. The successful distinction of seven different randomly mixed dyes underscores the versatility and efficacy of the proposed method in the highly accurate determination of single dye molecules, paving the way for highly parallel single-molecule detection for diverse applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    随着在理解基因功能和治疗方面的重大进展,基因技术的潜在误用,特别是在通过基因兴奋剂(GD)进行体育运动的背景下,已经走到了前列。这引起了人们对需要对各种GD候选人进行即时测试以打击体育运动中的非法行为的担忧。然而,当前的GD检测技术,如PCR,缺乏现场复用检测所需的便携性。在这项研究中,我们介绍了一种基于微流体的集成芯片,用于多重基因掺杂检测,称为MGD-芯片。通过亲水和疏水通道的战略设计,MGD-Chip使RPA和CRISPR-Cas12a测定能够在设备上依次进行,确保最小的干扰和交叉污染。选择了六个潜在的GD候选物,并在1小时内在平台上同时成功测试。该平台对未扩增的靶质粒的检测灵敏度为0.1nM,对扩增的靶质粒的检测灵敏度为1aM。使用通过注射IGFI和EPO转基因建立的小鼠模型进行验证,证实了该平台在检测真实样品中基因掺杂的功效。这项技术,能够使用便携式元件检测多个目标,有望在体育赛事中进行实时GD检测,提供一个快速的,高度敏感,和用户友好的解决方案,以维护体育比赛的完整性。
    With significant advancements in understanding gene functions and therapy, the potential misuse of gene technologies, particularly in the context of sports through gene doping (GD), has come to the forefront. This raises concerns regarding the need for point-of-care testing of various GD candidates to counter illicit practices in sports. However, current GD detection techniques, such as PCR, lack the portability required for on-site multiplexed detection. In this study, we introduce an integrated microfluidics-based chip for multiplexed gene doping detection, termed MGD-Chip. Through the strategic design of hydrophilic and hydrophobic channels, MGD-Chip enables the RPA and CRISPR-Cas12a assays to be sequentially performed on the device, ensuring minimal interference and cross-contamination. Six potential GD candidates were selected and successfully tested simultaneously on the platform within 1 h. Demonstrating exceptional specificity, the platform achieved a detection sensitivity of 0.1 nM for unamplified target plasmids and 1 aM for amplified ones. Validation using mouse models established by injecting IGFI and EPO transgenes confirmed the platform\'s efficacy in detecting gene doping in real samples. This technology, capable of detecting multiple targets using portable elements, holds promise for real-time GD detection at sports events, offering a rapid, highly sensitive, and user-friendly solution to uphold the integrity of sports competitions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    创伤性脑损伤(TBI)是公认的全球性公共卫生危机,每年影响数百万人,导致永久性神经学,情感,和职业残疾,并强调迫切需要快速,敏感,早期评估。这里,我们设计了一种新颖且简单的无光刻方法,用于制备基于石墨烯的双通道场效应晶体管(G-FET),并将其与微流体通道集成,以同时多路检测关键的血液TBI生物标志物:神经丝轻链(NFL)和胶质纤维酸性蛋白(GFAP)。G-FET采用巧妙的双通道电极阵列设计,其中源在通道之间共享,并且排水管彼此独立,这是实现双检测信号同时输出的关键。同时,微流控芯片实现了微尺度的流体控制和快速的样品响应时间。这种集成的检测系统在生物流体中对TBI生物标志物具有出色的灵敏度,在磷酸盐缓冲盐水(PBS)缓冲液中,NFL的检出限低至55.63fg/mL,GFAP的检出限低至144.45fg/mL。分别。最后,临床样本分析显示了TBI检测的良好性能,两种生物标志物的曲线下面积(AUC)为0.98。并且组合的双蛋白测定也是计算机断层扫描(CT)扫描(AUC=0.907)的颅内损伤发现的良好预测指标。具有双信号输出策略的集成微流体G-FET器件在临床实践中具有重要的应用潜力,为脑损伤评估提供更全面的信息。
    Traumatic brain injury (TBI) is widely recognized as a global public health crisis, affecting millions of people each year, leading to permanent neurologic, emotional, and occupational disability, and highlighting the urgent need for rapid, sensitive, and early assessment. Here, we design a novel and simple lithography-free method for preparing dual-channel graphene-based field-effect transistors (G-FETs) and integrating them with microfluidic channels for simultaneously multiplexed detection of key blood TBI biomarkers: neurofilament light chain (NFL) and glial fibrillary acidic protein (GFAP). The G-FET utilizes an ingenious dual-channel electrode array design, where the source is shared between channels and the drains are independent of each other, which is the key to achieving simultaneous output of dual detection signals. At the same time, the microfluidic chip realizes microscale fluidic control and fast sample response time. This integrated detection system shows excellent sensitivity in biological fluids for the TBI biomarkers with detection limits as low as 55.63 fg/mL for NFL and 144.45 fg/mL for GFAP in phosphate-buffered saline (PBS) buffer, respectively. Finally, the clinical sample analysis shows promising performance for TBI detection, with an area under the curve (AUC) of 0.98 for the two biomarkers. And the combined dual-protein assay is also a good predictor of intracranial injury findings on computed tomography (CT) scans (AUC = 0.907). The integrated microfluidic G-FET device with a dual-signal output strategy has important potential for application in clinical practice, providing more comprehensive information for brain injury assessment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    越来越多的应用需要在单个反应中同时检测多重核酸靶标。这使得更高的信息密度与减少的测定时间和成本相结合。聚集的规则间隔短回文重复序列(CRISPR)和CRISPR-Cas系统由于其强特异性而在核酸检测中具有广泛的应用。高灵敏度,和出色的可编程性。然而,由于非特异性侧支切割活性,实现多重检测对于CRISPR-Cas系统仍然具有挑战性,有限的信号报告策略,和可能的交叉反应。在这次审查中,我们总结原则,战略,和基于CRISPR-Cas系统的多路检测的特点,并进一步讨论了挑战和前景。
    A growing number of applications require simultaneous detection of multiplexed nucleic acid targets in a single reaction, which enables higher information density in combination with reduced assay time and cost. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-Cas system have broad applications for the detection of nucleic acids due to their strong specificity, high sensitivity, and excellent programmability. However, realizing multiplexed detection is still challenging for the CRISPR-Cas system due to the nonspecific collateral cleavage activity, limited signal reporting strategies, and possible cross-reactions. In this review, we summarize the principles, strategies, and features of multiplexed detection based on the CRISPR-Cas system and further discuss the challenges and perspective.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    呼吸道病毒引起的流行病,比如SARS-CoV-1/2流感病毒,和呼吸道合胞病毒,给人类造成了严重后果和大量死亡。在感染的早期阶段检测这种呼吸道病毒可以通过防止病毒传播来帮助控制疾病。然而,呼吸道病毒种类和亚型的多样性,它们的快速基因突变,并且在感染的早期阶段有限的病毒释放给它们的检测带来了挑战。这项工作报告了一种多路复用的微流控免疫测定芯片,用于同时检测八种具有明显感染人群的呼吸道病毒,即,甲型流感病毒,乙型流感病毒,呼吸道合胞病毒,SARS-CoV-2,人类博卡病毒,人类偏肺病毒,腺病毒,和人类副流感病毒。对纳米酶的纳米材料(Au@Pt纳米颗粒)进行了优化,以提高标记效率并显著提高检测灵敏度。使用Nanozyme结合抗体在40分钟内用肉眼和酶标仪以0.1pg/mL的检测极限检测病毒蛋白。此外,在免疫测定中针对每种病毒的保守蛋白筛选特异性抗体,临床样本检测显示出很高的特异性,八种病原体之间没有交叉反应性。此外,微流控芯片免疫分析显示出很高的准确性,与临床样品检测的RT-PCR方法相比,阳性/阴性符合率为97.2%/94.3%。因此,这种提出的方法提供了一种方便的,快速,和同时检测八种呼吸道病毒的灵敏方法,这对病毒感染的早期诊断具有重要意义。重要的是,它可以被广泛用于检测病原体和生物标志物,只取代抗原特异性抗体。
    Pandemics caused by respiratory viruses, such as the SARS-CoV-1/2, influenza virus, and respiratory syncytial virus, have resulted in serious consequences to humans and a large number of deaths. The detection of such respiratory viruses in the early stages of infection can help control diseases by preventing the spread of viruses. However, the diversity of respiratory virus species and subtypes, their rapid antigenic mutations, and the limited viral release during the early stages of infection pose challenges to their detection. This work reports a multiplexed microfluidic immunoassay chip for simultaneous detection of eight respiratory viruses with noticeable infection population, namely, influenza A virus, influenza B virus, respiratory syncytial virus, SARS-CoV-2, human bocavirus, human metapneumovirus, adenovirus, and human parainfluenza viruses. The nanomaterial of the nanozyme (Au@Pt nanoparticles) was optimized to improve labeling efficiency and enhance the detection sensitivity significantly. Nanozyme-binding antibodies were used to detect viral proteins with a limit of detection of 0.1 pg/mL with the naked eye and a microplate reader within 40 min. Furthermore, specific antibodies were screened against the conserved proteins of each virus in the immunoassay, and the clinical sample detection showed high specificity without cross reactivity among the eight pathogens. In addition, the microfluidic chip immunoassay showed high accuracy, as compared with the RT-PCR assay for clinical sample detection, with 97.2%/94.3% positive/negative coincidence rates. This proposed approach thus provides a convenient, rapid, and sensitive method for simultaneous detection of eight respiratory viruses, which is meaningful for the early diagnosis of viral infections. Significantly, it can be widely used to detect pathogens and biomarkers by replacing only the antigen-specific antibodies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于荧光染料的环介导等温扩增(LAMP)是一种灵敏的核酸检测方法,但仅限于单重检测,可能产生非特异性信号。在这项研究中,我们提出了一种基于双功能探针的实时LAMP扩增方法,用于单路或多路检测。双功能探针是通过修饰荧光团的5'末端和LAMP引物之一上的内部猝灭剂而衍生的;因此,它可以同时参与LAMP过程和信号放大。在将双功能探针掺入双链DNA扩增子期间,荧光强度经历累积指数增加。基于双功能探针的LAMP方法简化且具有成本效益,因为引物设计和实验操作与普通LAMP完全一致。与其他基于当前探针的方法不同,这种方法不需要额外的酶,序列,或特殊的探头结构。此外,它比其他几种基于探针的LAMP方法快10分钟。基于双功能探针的LAMP方法允许在一锅反应中同时检测目标副溶血性弧菌DNA和内部扩增对照,展示了其多路检测的潜力。
    Fluorescence dye-based loop-mediated isothermal amplification (LAMP) is a sensitive nucleic acid detection method, but is limited to single-plex detection and may yield non-specific signals. In this study, we propose a bifunctional probe-based real-time LAMP amplification method for single-plexed or multiplexed detection. The bifunctional probe is derived by modifying the 5\' end of the fluorophore and an internal quencher on one of the LAMP primers; therefore, it can simultaneously be involved in the LAMP process and signal amplification. The fluorescence intensity undergoes a cumulative exponential increase during the incorporation of the bifunctional probe into double-stranded DNA amplicons. The bifunctional probe-based LAMP method is simplified and cost-effective, as the primer design and experimental operations align entirely with the ordinary LAMP. Different from other current probe-based methods, this method does not require additional enzymes, sequences, or special probe structures. Also, it is 10 min faster than several other probe-based LAMP methods. The bifunctional probe-based LAMP method allows the simultaneous detection of the target Vibrio parahaemolyticus DNA and the internal amplification control in a one-pot reaction, demonstrating its potential for multiplexed detection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肝细胞癌(HCC),作为最致命的癌症之一,显著影响人类健康。该领域的尝试倾向于开发具有灵敏和多路检测特性的新技术以用于早期诊断。这里,我们提出了新型的水凝胶光子晶体(PhC)条形码与酪胺沉积放大酶联免疫吸附测定(ELISA)用于高度敏感和多重HCC生物标志物筛选。由于丙烯酸(AA)组分中含有丰富的氨基,构建的具有反蛋白石结构的水凝胶PhC条形码可以促进抗体探针的加载,用于随后的肿瘤标志物检测。通过在条形码上整合酪胺沉积扩增的ELISA,肿瘤标志物的检测信号增强。基于这些特征,这表明,水凝胶PhC条形码与酪胺沉积放大ELISA可以实现高度敏感和多重检测HCC相关的生物标志物。发现这种方法是灵活的,灵敏准确,适用于低丰度肿瘤标志物的多变量分析和未来的癌症诊断。这些功能使新开发的PhC条形码成为一个创新平台,这对低丰度目标的实际应用具有巨大的潜力。
    Hepatocellular carcinoma (HCC), as one of the most lethal cancers, significantly impacts human health. Attempts in this area tends to develop novel technologies with sensitive and multiplexed detection properties for early diagnosis. Here, we present novel hydrogel photonic crystal (PhC) barcodes with tyramine deposition amplified enzyme-linked immunosorbent assay (ELISA) for highly sensitive and multiplexed HCC biomarker screening. Because of the abundant amino groups of acrylic acid (AA) component, the constructed hydrogel PhC barcodes with inverse opal structure could facilitate the loading of antibody probes for subsequent detection of tumor markers. By integrating tyramine deposition amplified ELISA on the barcode, the detection signal of tumor markers has been enhanced. Based on these features, it is demonstrated that the hydrogel PhC barcodes with tyramine deposition amplified ELISA could realize highly sensitive and multiplexed detection of HCC-related biomarkers. It was found that this method is flexible, sensitive and accurate, suitable for multivariate analysis of low abundance tumor markers and future cancer diagnosis. These features make the newly developed PhC barcodes an innovation platform, which possesses tremendous potential for practical application of low abundance targets.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在单个生物传感器板内并行的代谢物的多重检测是足够有价值的,但也是具有挑战性的。在这里,我们将硅固有的光寻址能力与酶的高选择性相结合,用于构建多路光电化学酶生物传感器。为了对硅进行稳定的电化学和无试剂的生物传感,提出了一种使用基于酰胺键的水凝胶膜固定氧化还原介体和酶的新策略。膜表征结果表明二茂铁介体与水凝胶共价偶联,在这种情况下,调解人不仅是信号发生器,而且是可再生的牺牲剂。通过在水凝胶膜改性硅的不同点上添加相应的酶,并用可移动的光指针记录局部光电流,这种生物传感器装置被成功地用于检测多种代谢物,如乳酸,葡萄糖,和肌氨酸,具有良好的分析性能。葡萄糖的检测限,发现肌氨酸和乳酸为179μM,16μM,和780μM,线性范围为0.5-2.5mM,0.3-1.5mM,和1.0-3.0mM,分别。我们相信,这项概念验证研究提供了一种简单而快速的一步固定方法,用于使用基于硅的光寻址电化学制造无试剂的酶测定。
    The multiplexed detection of metabolites in parallel within a single biosensor plate is sufficiently valuable but also challenging. Herein, we combine the inherent light addressability of silicon with the high selectivity of enzymes, for the construction of multiplexed photoelectrochemical enzymatic biosensors. To conduct a stable electrochemistry and reagentless biosensing on silicon, a new strategy involving the immobilization of both redox mediators and enzymes using an amide bond-based hydrogel membrane was proposed. The membrane characterization results demonstrated a covalent coupling of ferrocene mediator to hydrogel, in which the mediator acted as not only a signal generator but also a renewable sacrifice agent. By adding corresponding enzymes on different spots of hydrogel membrane modified silicon and recording local photocurrents with a moveable light pointer, this biosensor setup was used successfully to detect multiple metabolites, such as lactate, glucose, and sarcosine, with good analytical performances. The limits of detection of glucose, sarcosine and lactate were found to be 179 μM, 16 μM, and 780 μM with the linear ranges of 0.5-2.5 mM, 0.3-1.5 mM, and 1.0-3.0 mM, respectively. We believe this proof-of-concept study provides a simple and rapid one-step immobilization approach for the fabrication of reagentless enzymatic assays with silicon-based light-addressable electrochemistry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    呼吸道感染和食物污染物对全球健康和经济构成严峻挑战。同时检测多种病原体的快速现场平台对于准确诊断至关重要,适当的治疗,减少医疗负担。在这里,我们提出了一个球体上球体(SOS)平台,用于使用便携式库尔特计数器进行多路检测,它采用毫米和微米大小的球体与抗体偶联作为多靶标探针。该测定法允许通过简单混合在20分钟内定量检测多种分析物,启用现场检测。该平台在识别三种呼吸道病毒(SARS-CoV-2,甲型流感病毒,和副流感病毒)来自咽拭子样本,LOD为50.7、32.4和49.1pg/mL。它还证明了在量化三种真菌毒素(黄曲霉毒素B1,脱氧雪腐镰刀菌烯醇,和曲霉毒素A)来自食品样品。SOS平台为资源有限环境中的应用提供了高灵敏度和特异性的快速现场方法。
    Respiratory infections and food contaminants pose severe challenges to global health and the economy. A rapid on-site platform for the simultaneous detection of multiple pathogens is crucial for accurate diagnosis, appropriate treatment, and a reduced healthcare burden. Herein, we present a spheres-on-sphere (SOS) platform for multiplexed detection using a portable Coulter counter, which employs millimeter- and micron-sized spheres coupled with antibodies as multitarget probes. The assay allows for quantitative detection of multiple analytes within 20 min by simple mixing, enabling on-site detection. The platform shows high accuracy in identifying three respiratory viruses (SARS-CoV-2, influenza A virus, and parainfluenza virus) from throat swab samples, with LOD of 50.7, 32.4, and 49.1 pg/mL. It also demonstrates excellent performance in quantifying three mycotoxins (aflatoxin B1, deoxynivalenol, and ochratoxin A) from food samples. The SOS platform offers a rapid on-site approach with high sensitivity and specificity for applications in resource-limited settings.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过具有不同特征的可读标签构建的生物编码技术是一种全新的生物分析方法,可实现多路识别和生物信息解码。在这项研究中,报道了一种基于四面体DNA纳米结构(TDN)载体和Frster共振能量转移(FRET)效应的新型荧光强度编码技术,称为Tetra-FICT。通过在TDN的四个顶点处调节Cy3和Cy5的数量和距离,通过检测荧光光谱,在~565.0nm(FICy3)和~665.0nm(FICy5)处产生了26个样品的不同荧光强度。通过开发纠错机制,基于最终FICy3与FICy5(Final-FICy3&FICy5)的分开的强度范围,建立了11个代码。这些产生的代码用于构建条形码探针,用三种miRNA生物标志物(miRNA-210、miRNA-199a和miRNA-21)作为多重生物测定的案例。还证明了miRNA-210检测的高特异性和敏感性。总的来说,提议的Tetra-FICT丰富了荧光编码的工具箱,可应用于多重生物标志物检测。
    Biocoding technology constructed by readable tags with distinct signatures is a brand-new bioanalysis method to realize multiplexed identification and bio-information decoding. In this study, a novel fluorescence intensity coding technology termed Tetra-FICT was reported based on tetrahedron DNA nanostructure (TDN) carrier and Főrster Resonance Energy Transfer (FRET) effect. By modulating numbers and distances of Cy3 and Cy5 at four vertexes of TDN, different fluorescence intensities of twenty-six samples were produced at ∼565.0 nm (FICy3) and ∼665.0 nm (FICy5) by detecting fluorescence spectra. By developing an error correction mechanism, eleven codes were established based on divided intensity ranges of the final FICy3 together with FICy5 (Final-FICy3&FICy5). These resulting codes were used to construct barcode probes, with three miRNA biomarkers (miRNA-210, miRNA-199a and miRNA-21) as cases for multiplexed bio-assay. The high specificity and sensitivity were also demonstrated for the detection of miRNA-210. Overall, the proposed Tetra-FICT enriched the toolbox of fluorescence coding, which could be applied to multiplexing biomarkers detection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号