Komagataella phaffii

  • 文章类型: Journal Article
    非常规甲基营养酵母Komagataellaphafii被广泛应用于工业酶的生产中,药用蛋白质,和各种高价值化学品。为K.phafii开发强大而通用的基因组编辑工具对于设计越来越先进的细胞工厂至关重要。这里,我们首先基于CRISPR-nCas9系统开发了一种用于K.phafii的碱基编辑方法。我们设计了24种不同的基础编辑器结构,使用各种启动子和胞苷脱氨酶(CDAs)。最佳碱基编辑器(PAOX2*-KpA3A-nCas9-KpUGI-DAS1TT)包含截短的AOX2启动子(PAOX2*),一种K.phafii密码子优化的人APOBEC3ACDA(KpA3A),人密码子优化的nCas9(D10A),和K.phafii密码子优化的尿嘧啶糖基化酶抑制剂(KpUGI)。这个最佳的基础编辑器在K.phafii中有效地执行了C到T编辑,与单-,double-,三基因座编辑效率高达96.0%,65.0%,和5.0%,分别,在从C-18到C-12的7个核苷酸窗口内。为了扩大可靶向基因组区域,我们还用nSpG和nSpRy替换了最佳基础编辑器中的nCas9,NGN-前间隔区相邻基序(PAM)位点的C-T编辑效率达到50.0%-60.0%,NRN-PAM位点的C-T编辑效率达到20.0%-93.2%,分别。因此,这些构建的基础编辑器已经成为基因功能研究的强大工具,代谢工程,基因改良,以及K.phafii的功能基因组学研究。
    The nonconventional methylotrophic yeast Komagataella phaffii is widely applied in the production of industrial enzymes, pharmaceutical proteins, and various high-value chemicals. The development of robust and versatile genome editing tools for K. phaffii is crucial for the design of increasingly advanced cell factories. Here, we first developed a base editing method for K. phaffii based on the CRISPR-nCas9 system. We engineered 24 different base editor constructs, using a variety of promoters and cytidine deaminases (CDAs). The optimal base editor (PAOX2*-KpA3A-nCas9-KpUGI-DAS1TT) comprised a truncated AOX2 promoter (PAOX2*), a K. phaffii codon-optimized human APOBEC3A CDA (KpA3A), human codon-optimized nCas9 (D10A), and a K. phaffii codon-optimized uracil glycosylase inhibitor (KpUGI). This optimal base editor efficiently performed C-to-T editing in K. phaffii, with single-, double-, and triple-locus editing efficiencies of up to 96.0%, 65.0%, and 5.0%, respectively, within a 7-nucleotide window from C-18 to C-12. To expand the targetable genomic region, we also replaced nCas9 in the optimal base editor with nSpG and nSpRy, and achieved 50.0%-60.0% C-to-T editing efficiency for NGN-protospacer adjacent motif (PAM) sites and 20.0%-93.2% C-to-T editing efficiency for NRN-PAM sites, respectively. Therefore, these constructed base editors have emerged as powerful tools for gene function research, metabolic engineering, genetic improvement, and functional genomics research in K. phaffii.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    溶菌酶,抗菌剂,广泛用于食品和医疗保健部门,以促进肽聚糖的分解。然而,提高其催化活性和分泌表达的方法仍有待研究。在本研究中,使用Komagataellaphafii表达系统异源表达了十二种来自不同来源的溶菌酶。其中,欧洲扁平牡蛎(oeLYZ)的溶菌酶活性最高。通过半理性的方法来减少结构自由能,产生了催化活性比野生型高1.8倍的双突变体Y15A/S39R(oeLYZdm)。随后,使用不同的N端融合标签来增强oeLYZdm表达。与肽标签6×Glu的融合导致重组oeLYZdm表达的显着增加,摇瓶培养从2.81×103U·mL-1到2.11×104U·mL-1,在3升发酵罐中最终达到2.05×105U·mL-1。这项工作在已知存在的微生物系统中产生了最大量的异源oeLYZ表达。降低结构自由能和使用N端融合标签是提高溶菌酶催化活性和分泌表达的有效策略。
    Lysozyme, an antimicrobial agent, is extensively employed in the food and healthcare sectors to facilitate the breakdown of peptidoglycan. However, the methods to improve its catalytic activity and secretory expression still need to be studied. In the present study, twelve lysozymes from different origins were heterologously expressed using the Komagataella phaffii expression system. Among them, the lysozyme from the European flat oyster Ostrea edulis (oeLYZ) showed the highest activity. Via a semi-rational approach to reduce the structural free energy, the double mutant Y15A/S39R (oeLYZdm) with the catalytic activity 1.8-fold greater than that of the wild type was generated. Subsequently, different N-terminal fusion tags were employed to enhance oeLYZdm expression. The fusion with peptide tag 6×Glu resulted in a remarkable increase in the recombinant oeLYZdm expression, from 2.81 × 103 U mL-1 to 2.11 × 104 U mL-1 in shake flask culture, and eventually reaching 2.05 × 105 U mL-1 in a 3-L fermenter. The work produced the greatest amount of heterologous oeLYZ expression in microbial systems that are known to exist. Reducing the structural free energy and employing the N-terminal fusion tags are effective strategies to improve the catalytic activity and secretory expression of lysozyme.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    硫酸软骨素(CS)是治疗骨关节炎的膳食补充剂中的关键化合物,推动了对环保和安全CS生产的生物技术追求的浓厚兴趣。CS例如CSA的酶促合成被认为是最有前途的方法之一。然而,始终遇到的瓶颈是CSA生物合成过程中软骨素4-O-磺基转移酶(C4ST)的活性表达。本研究通过转录的系统增强来仔细研究优化C4ST表达,翻译,和通过5'非翻译区修饰的分泌机制,N端编码序列,和Komagataellaphafii底盘。最终,活动C4ST表达式升级到2713.1U/L,代表惊人的43.7倍增长。通过应用C4ST的培养液上清液并整合3'-磷酸腺苷-5'-磷酸硫酸盐(PAPS)生物合成模块,我们构建了一个用于CSA生物合成的一锅法酶系统,达到显著的磺化程度高达97.0%。C4ST表达的显着增强和工程化的一锅法酶合成系统的开发有望加快具有可定制磺化度的大规模CSA生物合成。
    Chondroitin sulfate (CS) stands as a pivotal compound in dietary supplements for osteoarthritis treatment, propelling significant interest in the biotechnological pursuit of environmentally friendly and safe CS production. Enzymatic synthesis of CS for instance CSA has been considered as one of the most promising methods. However, the bottleneck consistently encountered is the active expression of chondroitin 4-O-sulfotransferase (C4ST) during CSA biosynthesis. This study meticulously delved into optimizing C4ST expression through systematic enhancements in transcription, translation, and secretion mechanisms via modifications in the 5\' untranslated region, the N-terminal encoding sequence, and the Komagataella phaffii chassis. Ultimately, the active C4ST expression escalated to 2713.1 U/L, representing a striking 43.7-fold increase. By applying the culture broth supernatant of C4ST and integrating the 3\'-phosphoadenosine-5\'-phosphosulfate (PAPS) biosynthesis module, we constructed a one-pot enzymatic system for CSA biosynthesis, achieving a remarkable sulfonation degree of up to 97.0 %. The substantial enhancement in C4ST expression and the development of an engineered one-pot enzymatic synthesis system promises to expedite large-scale CSA biosynthesis with customizable sulfonation degrees.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Komagataellaphaffii,一种非常规的酵母,由于其翻译后修饰能力,对研究人员越来越有吸引力,严格的甲醇监管机制,缺乏Crabtree效应.尽管基于CRISPR的基因编辑系统已经在K.phafii中建立,与模型生物酿酒酵母相比,仍然存在一些不足。在这项研究中,重新设计的携带红色和绿色荧光蛋白的gRNA质粒促进了质粒构建和标记回收,分别,使记号笔回收更方便可靠。随后,基于Ku70和DNA连接酶IV的敲除,我们尝试在一个位点整合多个DNA片段。将26.5kb长的DNA片段分为11个用于番茄红素合成的表达盒,可以一次成功整合到单个基因座中,成功率为57%。通过同时引入两个DSB,也可以在K.phafii中以50%的阳性率精确敲除27kb长的DNA片段。最后,为了探索快速平衡代谢途径中多个基因表达强度的可行性,以番茄红素为指标,成功构建了一个酵母组合文库。通过筛选确定了代谢途径的最佳组合,摇瓶发酵的产量滴度高达182.73mg/L。关键点:•基于绿色荧光蛋白可视化的快速标记回收•基因组中的一步多片段整合和大片段敲除•多个DNA元件的随机组装以在K.phafii中创建酵母文库。
    Komagataella phaffii, a nonconventional yeast, is increasingly attractive to researchers owing to its posttranslational modification ability, strict methanol regulatory mechanism, and lack of Crabtree effect. Although CRISPR-based gene editing systems have been established in K. phaffii, there are still some inadequacies compared to the model organism Saccharomyces cerevisiae. In this study, a redesigned gRNA plasmid carrying red and green fluorescent proteins facilitated plasmid construction and marker recycling, respectively, making marker recycling more convenient and reliable. Subsequently, based on the knockdown of Ku70 and DNA ligase IV, we experimented with integrating multiple DNA fragments at a single locus. A 26.5-kb-long DNA fragment divided into 11 expression cassettes for lycopene synthesis could be successfully integrated into a single locus at one time with a success rate of 57%. A 27-kb-long DNA fragment could also be precisely knocked out with a 50% positive rate in K. phaffii by introducing two DSBs simultaneously. Finally, to explore the feasibility of rapidly balancing the expression intensity of multiple genes in a metabolic pathway, a yeast combinatorial library was successfully constructed in K. phaffii using lycopene as an indicator, and an optimal combination of the metabolic pathway was identified by screening, with a yield titer of up to 182.73 mg/L in shake flask fermentation. KEY POINTS: • Rapid marker recycling based on the visualization of a green fluorescent protein • One-step multifragment integration and large fragment knockout in the genome • A random assembly of multiple DNA elements to create yeast libraries in K. phaffii.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    一种新的天疱疮木霉天冬氨酸蛋白酶基因(TaproA1)已成功表达于Pichiapastoris。TaproA1显示与球虫C735的天冬氨酸蛋白酶PEP3具有52.8%的氨基酸序列同一性。TaproA1在5L发酵罐中有效产生,蛋白酶活性为4092U/mL。它在pH3.0和50°C下表现出最佳反应条件,并且在pH3.0-6.0和高达45°C的温度下稳定。蛋白酶表现出广泛的底物特异性,对肌红蛋白和血红蛋白具有高水解活性。此外,用TaproA1水解鸭血蛋白(血红蛋白和血浆蛋白),制备具有高ACE抑制活性的生物活性肽。鸭血蛋白中血红蛋白和血浆蛋白水解物的IC50值分别为0.105mg/mL和0.091mg/mL,分别。因此,这里提出的TaproA1的高产率和出色的生化特性使其成为制备鸭血肽的潜在候选者。关键词:•来自天冬木霉的天冬氨酸蛋白酶(TaproA1)在白斑科氏杆菌中表达。•TaproA1表现出广泛的底物特异性和对肌红蛋白和血红蛋白的最高活性。•TaproA1具有从鸭血蛋白制备生物活性肽的巨大潜力。
    A novel aspartic protease gene (TaproA1) from Trichoderma asperellum was successfully expressed in Komagataella phaffii (Pichia pastoris). TaproA1 showed 52.8% amino acid sequence identity with the aspartic protease PEP3 from Coccidioides posadasii C735. TaproA1 was efficiently produced in a 5 L fermenter with a protease activity of 4092 U/mL. It exhibited optimal reaction conditions at pH 3.0 and 50 °C and was stable within pH 3.0-6.0 and at temperatures up to 45 °C. The protease exhibited broad substrate specificity with high hydrolysis activity towards myoglobin and hemoglobin. Furthermore, duck blood proteins (hemoglobin and plasma protein) were hydrolyzed by TaproA1 to prepare bioactive peptides with high ACE inhibitory activity. The IC50 values of hemoglobin and plasma protein hydrolysates from duck blood proteins were 0.105 mg/mL and 0.091 mg/mL, respectively. Thus, the high yield and excellent biochemical characterization of TaproA1 presented here make it a potential candidate for the preparation of duck blood peptides. KEY POINTS: • An aspartic protease (TaproA1) from Trichoderma asperellum was expressed in Komagataella phaffii. • TaproA1 exhibited broad substrate specificity and the highest activity towards myoglobin and hemoglobin. • TaproA1 has great potential for the preparation of bioactive peptides from duck blood proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Review
    如今,工程Komagataellaphaffii在小分子代谢物和蛋白质产物的生物合成中起着重要作用,在工业生产中显示出巨大的潜力和价值。随着CRISPR/Cas9等新编辑工具的开发和应用,已经有可能将K.phafii设计成具有高多基因效率的细胞工厂。这里,首先总结了工程K.phafii的遗传操作技术和目标。其次,介绍了工程K.phafii作为细胞工厂的应用。同时,讨论了工程K.phafii作为细胞工厂的优缺点,并展望了未来的工程方向。这篇综述旨在为进一步工程K.phafii细胞工厂提供参考,这应该有助于其在生物工业中的应用。
    Nowadays, engineered Komagataella phaffii plays an important role in the biosynthesis of small molecule metabolites and protein products, showing great potential and value in industrial productions. With the development and application of new editing tools such as CRISPR/Cas9, it has become possible to engineer K. phaffii into a cell factory with high polygenic efficiency. Here, the genetic manipulation techniques and objectives for engineering K. phaffii are first summarized. Secondly, the applications of engineered K. phaffii as a cell factory are introduced. Meanwhile, the advantages as well as disadvantages of using engineered K. phaffii as a cell factory are discussed and future engineering directions are prospected. This review aims to provide a reference for further engineering K. phaffii cell factory, which is supposed to facilitate its application in bioindustry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    工业酵母Komagataellaphafii是异源蛋白生产的高效平台,由于其高的蛋白质表达和分泌能力。异源基因和蛋白质参与多个过程,包括转录,翻译,蛋白质折叠,修改,交通运输,和退化;然而,由于低效的基因组编辑技术,工程这些蛋白质和基因是具有挑战性的。我们使用铜绿假单胞菌噬菌体单链DNA退火蛋白(SSAP)PapRecT和铜绿假单胞菌单链DNA结合蛋白(SSB)PaSSB引入基于SSAP-SSB的同源重组,这促进了基于CRISPR的K.phafii基因组工程。具体来说,通过在单个质粒中用PapRecT-PaSSB表达sgRNA,开发了一种不依赖宿主的方法,只有50bp的短同源臂(HA)对基于CRISPR的基因插入达到100%的阳性率,每μg供体DNA达到18个菌落形成单位(CFU)。使用1000bpHA的单个缺失达到100%,达到每μg供体DNA68CFU。使用这种基于CRISPR的高效基因组编辑工具,我们整合了三个基因(INO4,GAL4样,和PAB1)在三个不同基因座上进行过表达,以实现人乳清蛋白(α-LA)生产的协同调节。具体来说,我们通过过表达转录和翻译因子,加强磷脂生物合成,促进内质网膜的形成,增强重组蛋白的转录和翻译。3L发酵中α-LA的最终产量达到113.4mgL-1,比没有多位点基因编辑的菌株高两倍,这是K.phafii中报道的最高滴度。本研究开发的基于CRISPR的基因组编辑方法适用于蛋白质和生化生物合成途径的协同多位点工程,以提高生物制造效率。
    The industrial yeast Komagataella phaffii is a highly effective platform for heterologous protein production, owing to its high protein expression and secretion capacity. Heterologous genes and proteins are involved in multiple processes, including transcription, translation, protein folding, modification, transportation, and degradation; however, engineering these proteins and genes is challenging due to inefficient genome editing techniques. We employed Pseudomonas aeruginosa phage single-stranded DNA-annealing protein (SSAP) PapRecT and P. aeruginosa single-stranded DNA-binding protein (SSB) PaSSB to introduce SSAP-SSB-based homology recombination, which facilitated K. phaffii CRISPR-based genome engineering. Specifically, a host-independent method was developed by expressing sgRNA with PapRecT-PaSSB in a single plasmid, with which only a 50 bp short homologous arm (HA) reached a 100% positive rate for CRISPR-based gene insertion, reaching 18 colony-forming units (CFU) per μg of donor DNA. Single deletion using 1000 bp HA attained 100%, reaching 68 CFUs per μg of donor DNA. Using this efficient CRISPR-based genome editing tool, we integrated three genes (INO4, GAL4-like, and PAB1) at three different loci for overexpression to realize the collaborative regulation of human-lactalbumin (α-LA) production. Specifically, we strengthened phospholipid biosynthesis to facilitate endoplasmic reticulum membrane formation and enhanced recombinant protein transcription and translation by overexpressing transcription and translation factors. The final production of α-LA in the 3 L fermentation reached 113.4 mg L-1, two times higher than that of the strain without multiple site gene editing, which is the highest reported titer in K. phaffii. The CRISPR-based genome editing method developed in this study is suitable for the synergistic multiple-site engineering of protein and biochemical biosynthesis pathways to improve the biomanufacturing efficiency.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大多数天然甲酸脱氢酶(FDHs)表现出NAD特异性,因此,探索NADPH再生系统的FDH辅因子特异性工程势在必行。Komagataellaphafii的内源性FDH(K。phaffii),称为KphFDH,是典型的NAD+-特异性FDH。然而,尚未对KphFDH的辅因子特异性进行工程研究。为了开发KphFDH的NADP+特异性变体,我们选择了D195,Y196和Q197作为突变位点,并产生了20个定点变异.通过动力学表征,KphFDH/V19(D195Q/Y196R/Q197H)被鉴定为对NADP+具有最高特异性的变体,催化效率(kcat/KM)NADP+/(kcat/KM)NAD+的比率为129.226。酶学性质的研究表明,KphFDH/V19催化的NADP还原反应的最佳温度和pH分别为45°C和7.5。进行分子动力学(MD)模拟以阐明KphFDH/V19对NADP的高催化活性的机理。最后,将KphFDH/V19应用于具有来自嗜热共生菌的内消旋二氨基庚二酸脱氢酶(StDAPDH/H227V)的体外NADPH再生系统。这项研究成功地创建了具有高NADP特异性的KphFDH变体,并证明了其在体外NADPH再生系统中的实际适用性。
    Most natural formate dehydrogenases (FDHs) exhibit NAD+ specificity, making it imperative to explore the engineering of FDH cofactor specificity for NADPH regeneration systems. The endogenous FDH of Komagataella phaffii (K. phaffii), termed KphFDH, is a typical NAD+ -specific FDH. However, investigations into engineering the cofactor specificity of KphFDH have yet to be conducted. To develop an NADP+ -specific variant of KphFDH, we selected D195, Y196, and Q197 as mutation sites and generated twenty site-directed variants. Through kinetic characterization, KphFDH/V19 (D195Q/Y196R/Q197H) was identified as the variant with the highest specificity towards NADP+ , with a ratio of catalytic efficiency (kcat /KM )NADP+ /(kcat /KM )NAD+ of 129.226. Studies of enzymatic properties revealed that the optimal temperature and pH for the reduction reaction of NADP+ catalyzed by KphFDH/V19 were 45 °C and 7.5, respectively. The molecular dynamics (MD) simulation was performed to elucidate the mechanism of high catalytic activity of KphFDH/V19 towards NADP+ . Finally, KphFDH/V19 was applied to an in vitro NADPH regeneration system with Meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum (StDAPDH/H227V). This study successfully created a KphFDH variant with high NADP+ specificity and demonstrated its practical applicability in an in vitro NADPH regeneration system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:本工作的目的是开发一种不依赖甲醇的Komagataellaphafii(K。phafii)使用非甲醇启动子的菌株。
    结果:在这项研究中,来自黑曲霉ATCC1015的食品级酶木聚糖酶被用作报告蛋白,以山梨醇为诱导剂,设计并构建了含有级联基因circus的重组K.phafii。山梨醇首先诱导PSDH导致MIT1表达,并最终表达异源蛋白木聚糖酶。该系统在单拷贝数额外MIT1的条件下显示1.7倍的木聚糖酶活性,在多拷贝额外MIT1基因的条件下显示2.1倍的木聚糖酶活性。
    结论:这种山梨糖醇诱导的K.phafii表达系统避免了有毒和爆炸性的甲醇。它是一种新型的级联基因表达和食品安全系统。
    OBJECTIVE: The aim of the present work was to develop a methanol-independent Komagataella phaffii (K. phaffii) strain using a non-methanol promoter.
    RESULTS: In this study, the food grade enzyme xylanase from Aspergillus niger ATCC 1015 was used as the reporter protein, a recombinant K. phaffii containing a cascade gene circus was designed and constructed using sorbitol as inducer. Sorbitol induced PSDH leading to MIT1 expression firstly, and heterologous protein xylanase expression finally. This system showed 1.7 fold of xylanase activity at the condition of single copy number of extra MIT1, and 2.1 fold of xylanase activity at condition of multi-copy extra MIT1 gene.
    CONCLUSIONS: This sorbitol-induced expression system of K. phaffii avoided toxic and explosive methanol. It was a novel cascade gene expression and a food safety system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    1-丙氨酰-1-谷氨酰胺(Ala-Gln)是一种广泛使用的增值二肽,其生产严重依赖于有效的生物催化剂。目前可用的表达α-氨基酸酯酰基转移酶(SsAet)的酵母生物催化剂具有相对较低的活性,这可能归因于糖基化。这里,促进酵母中的SsAet活性,我们将N-糖基化位点鉴定为位置442的Asn残基,随后通过去除人工和天然信号肽来消除N-糖基化对SsAet的负面影响,以获得K3A1,一种具有显着提高的活性的新型酵母生物催化剂。此外,确定了菌株K3A1的最佳反应条件(25℃,pH8.5,AlaOMe/Gln=1:2),最大摩尔产率和生产率分别约为80%和1.74g·(L·min)-1。因此,我们开发了一种有前途的系统,可以安全地生产Ala-Gln,高效,和可持续的方式,这可能有助于Ala-Gln未来的工业生产。
    l-Alanyl-l-glutamine (Ala-Gln) is a widely used value-added dipeptide whose production relies heavily upon an efficient biocatalyst. The currently available yeast biocatalysts that express α-amino acid ester acyltransferase (SsAet) possess relatively low activity, which may be attributed to glycosylation. Here, to promote SsAet activity in yeast, we identified the N-glycosylation site as the Asn residue at position 442 and subsequently eliminated the negative effect of N-glycosylation on SsAet by removing artificial and native signal peptides to obtain K3A1, a novel yeast biocatalyst with significantly improved activity. Additionally, the optimal reaction conditions of strain K3A1 were determined (25 °C, pH 8.5, AlaOMe/Gln = 1:2), resulting in a maximum molar yield and productivity of approximately 80% and 1.74 g·(L·min)-1, respectively. Therefore, we developed a promising system to cleanly produce Ala-Gln in a safe, efficient, and sustainable manner, which may contribute to the future industrial production of Ala-Gln.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号