IoT

IoT
  • 文章类型: Journal Article
    联盟学习中的内隐中毒是一个重大威胁,恶意节点每轮巧妙地改变梯度参数,使检测变得困难。这项研究调查了这个问题,揭示出仅靠时间分析就难以识别这种秘密攻击,这可以绕过余弦相似性和聚类等在线方法。常见的检测方法依赖于离线分析,导致反应延迟。然而,重新计算梯度更新揭示了恶意客户端的明显特征。基于这一发现,设计了一种基于轨迹异常检测的隐私保护检测算法。矩阵的奇异值用作特征,和改进的隔离林算法处理这些以检测恶意行为。MNIST实验,FashionMNIST,和CIFAR-10数据集显示,我们的方法实现了94.3%的检测准确率和1.2%以下的假阳性率,表明它在检测隐式模型中毒攻击方面具有很高的准确性和有效性。
    Implicit poisoning in federated learning is a significant threat, with malicious nodes subtly altering gradient parameters each round, making detection difficult. This study investigates this problem, revealing that temporal analysis alone struggles to identify such covert attacks, which can bypass online methods like cosine similarity and clustering. Common detection methods rely on offline analysis, resulting in delayed responses. However, recalculating gradient updates reveals distinct characteristics of malicious clients. Based on this finding, we designed a privacy-preserving detection algorithm using trajectory anomaly detection. Singular values of matrices are used as features, and an improved Isolation Forest algorithm processes these to detect malicious behavior. Experiments on MNIST, FashionMNIST, and CIFAR-10 datasets show our method achieves 94.3% detection accuracy and a false positive rate below 1.2%, indicating its high accuracy and effectiveness in detecting implicit model poisoning attacks.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    医疗保健对于患者护理至关重要,因为它为维持和恢复健康提供了至关重要的服务。随着医疗技术的发展,尖端的工具有助于更快的诊断和更有效的患者治疗。在大流行的时代,物联网(IoT)通过周围的链接设备创建有关患者的大量数据,然后对其进行分析以估计患者的当前状态,从而为患者安全监测问题提供了潜在的解决方案。利用基于物联网的元启发式算法可以对患者进行远程监控,从而及时诊断和改善护理。元启发式算法是成功的,弹性,并有效解决现实世界的增强,聚类,预测,和分组。医疗保健组织需要一种有效的方法来处理大数据,因为这些数据的普遍性使得分析诊断变得具有挑战性。由于不平衡的数据和过拟合问题,在医疗诊断中使用的当前技术具有局限性。
    本研究介绍了粒子群优化和卷积神经网络,将其用作物联网中广泛数据分析的元启发式优化方法,以监测患者的健康状况。
    粒子群优化用于优化研究中使用的数据。收集包括心脏风险预测的糖尿病诊断模型的信息。粒子群优化和卷积神经网络(PSO-CNN)结果有效地进行疾病预测。支持向量机已用于基于将收集的数据分类为糖尿病的预计异常和正常范围来预测心脏病发作的可能性。
    模拟结果表明,用于预测糖尿病疾病的PSO-CNN模型的准确性提高了92.6%,精度92.5%,召回率达到93.2%,F1得分94.2%,和量化误差4.1%。
    建议的方法可用于鉴定癌细胞。
    UNASSIGNED: Healthcare is crucial to patient care because it provides vital services for maintaining and restoring health. As healthcare technology evolves, cutting-edge tools facilitate faster diagnosis and more effective patient treatment. In the present age of pandemics, the Internet of Things (IoT) offers a potential solution to the problem of patient safety monitoring by creating a massive quantity of data about the patient through the linked devices around them and then analyzing it to estimate the patient\'s current status. Utilizing the IoT-based meta-heuristic algorithm allows patients to be remotely monitored, resulting in timely diagnosis and improved care. Meta-heuristic algorithms are successful, resilient, and effective in solving real-world enhancement, clustering, predicting, and grouping. Healthcare organizations need an efficient method for dealing with big data since the prevalence of such data makes it challenging to analyze for diagnosis. The current techniques used in medical diagnostics have limitations due to imbalanced data and the overfitting issue.
    UNASSIGNED: This study introduces the particle swarm optimization and convolutional neural network to be used as a meta-heuristic optimization method for extensive data analysis in the IoT to monitor patients\' health conditions.
    UNASSIGNED: Particle Swarm Optimization is used to optimize the data used in the study. Information for a diabetes diagnosis model that includes cardiac risk forecasting is collected. Particle Swarm Optimization and Convolutional Neural Networks (PSO-CNN) results effectively make illness predictions. Support Vector Machine has been used to predict the possibility of a heart attack based on the classification of the collected data into projected abnormal and normal ranges for diabetes.
    UNASSIGNED: The results of the simulations reveal that the PSO-CNN model used to predict diabetic disease increased in accuracy by 92.6%, precision by 92.5%, recall by 93.2%, F1-score by 94.2%, and quantization error by 4.1%.
    UNASSIGNED: The suggested approach could be applied to identify cancer cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    智能城市中的物联网(IoT)和5G通信技术为异构应用提供了有前途的服务。应用程序可靠性依赖于用户体验的不间断和无缝服务。然而,不断增长的智慧城市应用需求通过增加的等待时间来影响体验可靠性。因此,本文介绍了一种用于维持建设性应用服务的相干可靠性服务广播技术(CRSBT)。此技术结合了线性回归和离题学习,以实现应用服务的改进和限制。根据需求,回归过程验证等待时间,并减少需求,业务播送比例验证。这两个因素通过5G资源分配和物联网计算在需求和响应后得到验证。这两个面向服务的功能都针对回归服务广播进行了验证,并且其中一个用于离题响应。计算(IoT)和资源(5G)之间的一致性是按需和线性验证的。因此,所提出的技术在维持服务广播方面是可靠的,更少的等待时间,最大的灵活性。
    Internet of Things (IoT) and 5G communication technologies in smart cities deliver promising services for heterogeneous applications. The application reliability banks on uninterrupted and seamless services experienced by the users. However, the increasing smart city application demands influence the experience reliability through augmented wait times. This article therefore introduces a Coherent Reliability Service Broadcasting Technique (CRSBT) for sustaining constructive application services. This technique incorporates linear regressive and digressive learning for application service improvements and restrictions. Based on the demand, the regressive process verifies the wait time and with the reducing demands, the service broadcast ratio is verified. These two factors are verified post the demand and response through 5G resource allocations and IoT computations. Both the service-oriented features are validated for regressive service broadcast and either of the one is used for digressive response. The coherence between the computations (IoT) and resources (5G) is verified on-demand and linearly. Therefore, the proposed technique is reliable in sustaining service broadcast, less wait time, and maximum flexibility.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这项研究通过使用可穿戴心电图(ECG)传感器进行模式生成和卷积神经网络(CNN)进行决策分析,证明了在大流行中早期检测心肺并发症的有效方案。在与健康相关的疫情中,及时和早期诊断这些并发症对于降低死亡率和减轻医疗机构的负担是决定性的。现有的方法依赖于临床评估,病史回顾,和基于医院的监测,它们很有价值,但在可访问性方面有局限性,可扩展性,和及时性,特别是在大流行期间。所提出的方案通过在患者身体上部署可穿戴ECG传感器开始。这些传感器通过连续监测患者的心脏活动和呼吸模式来收集数据。所收集的原始数据然后以无线方式安全地传输到中央服务器并存储在数据库中。随后,存储的数据使用预处理过程进行评估,该过程提取相关且重要的特征,如心率变异性和呼吸率。然后将预处理的数据用作CNN模型的输入,以对正常和异常心肺模式进行分类。为了在异常检测中实现高准确度,在具有优化参数的标记数据上训练CNN模型。使用不同的场景评估和衡量拟议方案的性能,这表明在检测异常心肺模式方面具有强大的性能,灵敏度为95%,特异性为92%。突出的意见,这凸显了早期干预的潜力,包括心率变异性的细微变化和先前的呼吸窘迫。这些发现显示了可穿戴ECG技术在改善大流行管理策略和告知公共卫生政策方面的重要性。这增强了面对新出现的健康威胁的准备和复原力。
    This research study demonstrates an efficient scheme for early detection of cardiorespiratory complications in pandemics by Utilizing Wearable Electrocardiogram (ECG) sensors for pattern generation and Convolution Neural Networks (CNN) for decision analytics. In health-related outbreaks, timely and early diagnosis of such complications is conclusive in reducing mortality rates and alleviating the burden on healthcare facilities. Existing methods rely on clinical assessments, medical history reviews, and hospital-based monitoring, which are valuable but have limitations in terms of accessibility, scalability, and timeliness, particularly during pandemics. The proposed scheme commences by deploying wearable ECG sensors on the patient\'s body. These sensors collect data by continuously monitoring the cardiac activity and respiratory patterns of the patient. The collected raw data is then transmitted securely in a wireless manner to a centralized server and stored in a database. Subsequently, the stored data is assessed using a preprocessing process which extracts relevant and important features like heart rate variability and respiratory rate. The preprocessed data is then used as input into the CNN model for the classification of normal and abnormal cardiorespiratory patterns. To achieve high accuracy in abnormality detection the CNN model is trained on labeled data with optimized parameters. The performance of the proposed scheme is evaluated and gauged using different scenarios, which shows a robust performance in detecting abnormal cardiorespiratory patterns with a sensitivity of 95% and specificity of 92%. Prominent observations, which highlight the potential for early interventions include subtle changes in heart rate variability and preceding respiratory distress. These findings show the significance of wearable ECG technology in improving pandemic management strategies and informing public health policies, which enhances preparedness and resilience in the face of emerging health threats.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    向智能制造的过渡引入了现代协作制造环境中使用的机械和设备的复杂性,存在与设备故障相关的重大风险。智能制造的核心目标是通过集成最先进的技术来提升自动化,包括人工智能(AI),物联网(IoT),机器对机器(M2M)通信,云技术,和广泛的大数据分析。这种技术演变强调了先进的预测性维护策略的必要性,这些策略可以在设备异常升级为代价高昂的停机时间之前主动检测设备异常。为了满足这种需要,我们的研究提出了一个端到端平台,该平台将数据仓库的组织能力与ApacheSpark的计算效率融合在一起。该系统巧妙地管理大量的时间序列传感器数据,利用大数据分析无缝创建机器学习模型,并利用ApacheSpark驱动的引擎来即时处理流数据以进行故障检测。这个全面的平台体现了智能制造的重大飞跃,提供主动维护模式,增强数字化制造时代的运营可靠性和可持续性。
    The transition to smart manufacturing introduces heightened complexity in regard to the machinery and equipment used within modern collaborative manufacturing landscapes, presenting significant risks associated with equipment failures. The core ambition of smart manufacturing is to elevate automation through the integration of state-of-the-art technologies, including artificial intelligence (AI), the Internet of Things (IoT), machine-to-machine (M2M) communication, cloud technology, and expansive big data analytics. This technological evolution underscores the necessity for advanced predictive maintenance strategies that proactively detect equipment anomalies before they escalate into costly downtime. Addressing this need, our research presents an end-to-end platform that merges the organizational capabilities of data warehousing with the computational efficiency of Apache Spark. This system adeptly manages voluminous time-series sensor data, leverages big data analytics for the seamless creation of machine learning models, and utilizes an Apache Spark-powered engine for the instantaneous processing of streaming data for fault detection. This comprehensive platform exemplifies a significant leap forward in smart manufacturing, offering a proactive maintenance model that enhances operational reliability and sustainability in the digital manufacturing era.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在物联网(IoT)技术的快速发展和多模态学习分析(MMLA)的新兴领域中,本研究采用空间定位技术作为案例研究,探讨多模式数据在评估儿童社会发展方面的潜力。本研究结合了在自然教育环境中自由玩耍期间收集的学龄前儿童的空间定位数据,以及基于观察性研究构建的空间度量,建立并验证了社会计量状态决策树分类模型。研究结果表明,该模型可以整体准确地识别具有三种不同社会计量状态的儿童,尽管不同的社会测量组和年龄组的疗效有一定的差异。值得注意的是,该模型在识别潜在被忽视的儿童方面表现出很高的命中率,为教育工作者理解和培养儿童的发展需求提供有价值的支持。这项研究还强调了新兴技术和多模态数据在儿童发展评估中的应用优势。
    Amidst the rapid advancement of Internet of Things (IoT) technology and the burgeoning field of Multimodal Learning Analytics (MMLA), this study employs spatial positioning technology as a case study to investigate the potential of multimodal data in assessing children\'s social development. This study combines the spatial positioning data of preschool children collected during free play sessions in natural educational settings and the spatial metrics constructed based on observational studies to establish and validate a sociometric status Decision Tree classification model. The findings suggest that the model can overall accurately identify children with three distinct sociometric statuses, albeit with some variability in efficacy across different sociometric groups and age groups. Notably, the model demonstrates a high hitting rate in identifying the potentially neglected children, providing valuable support for educators in understanding and fostering children\'s developmental needs. This study also highlights the advantages of emerging technology and multimodal data application in child development assessment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在体育科学的动态领域中,动态合作有望重新定义运动员安全和表现优化的极限。人工智能(AI)和物联网(IoT)的结合有望进入体育分析的新时代,其中数据驱动的见解不仅提高了我们对运动表现的理解,而且有助于减少危害。这项学术工作探讨了体育背景下AI和物联网之间的复杂相互作用。物联网和人工智能的集成似乎是一个强大的组合,有可能重新定义运动员安全和性能改进的标准。这项研究探讨了人工智能和物联网在体育领域的复杂相互作用,强调它们在识别各种领域的风险因素方面的综合潜力。通过利用物联网的数据驱动功能和AI的分析能力,有机会主动解决与体育相关的困难。为更明智的策略和决策打开大门。通过对这种共生关系的探索,本文旨在强调这些技术在培养更安全、更注重表现的体育环境方面的变革潜力。
    A dynamic cooperation is poised to redefine the limits of athlete safety and performance optimization in the dynamic field of sports science. A new age in sports analysis is promised by the combination of artificial intelligence (AI) and the internet of things (IoT), one in which data-driven insights not only improve our comprehension of athletic performance but also aid to reduce hazards. This academic work explores the complex interactions between AI and IoT in the context of sports. The IoT and AI integration appear to be a strong mix that has the potential to redefine the standards for athlete safety and performance improvement. This study explores the complex interactions between AI and IoT in the field of sports, emphasizing their combined potential for identifying risk factors in a variety of fields. There is a chance to proactively solve sports-related difficulties by utilizing the data-driven capabilities of IoT and the analytical power of AI, opening the door for better informed tactics and decision-making. Through an exploration of this symbiotic relationship, this paper seeks to underline the transformative potential of these technologies in fostering a safer and more performance-oriented sports environment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    随着智能设备的普及,物联网(IoT)正在迅速发展。本研究提出了一种具有低控制电压的小型化可控超材料,用于在IoT节点设备中实现低功耗和紧凑的设计。在2.4GHz的目标频率下工作,所提出的超材料仅需要3.3V的控制电压,并且在尺寸上占据大约三分之一的波长。实验验证证明了其优异的反射控制性能,将其定位为低功耗物联网系统的理想选择,特别是在小型化和低功耗物联网节点应用的背景下。
    With the proliferation of smart devices, the Internet of Things (IoT) is rapidly expanding. This study proposes a miniaturized controllable metamaterial with low control voltage for achieving low-power and compact designs in IoT node devices. Operating at a target frequency of 2.4 GHz, the proposed metamaterial requires only a 3.3 V control voltage and occupies approximately one-third of the wavelength in size. Experimental validation demonstrates its excellent reflective control performance, positioning it as an ideal choice for low-power IoT systems, particularly in the context of miniaturized and low-power IoT node applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    许多障碍困扰着当代艺术教育,特别是内容的一维交付和教学过程中缺乏实时互动。本研究通过设计一种在物联网(IoT)技术中根深蒂固的多模式感知系统来克服这些挑战。该系统捕获学生的视觉图像,发声,空间取向,运动,环境光度,和上下文数据,通过利用一系列包含视觉的交互模式,听觉,触觉,和嗅觉传感器。关于学习场景的这种多种信息的综合需要战略性地将传感器放置在物理环境中以促进直观和无缝的交互。利用数字艺术花卉种植作为一个典型的例证,这项调查制定了充满多感觉通道相互作用的任务,突破技术进步的界限。它开创了关键领域的进步,例如通过利用DenseNet网络进行视觉特征提取和利用SoundNet卷积神经网络进行语音特征提取。这种创新的范式建立了一个新颖的艺术教学框架,强调视觉刺激的重要性,同时吸收其他感官作为补充贡献者。随后对多模式感知交互系统的可用性进行评估,通过将Mel频率倒谱系数(MFCC)语音特征与长短期记忆(LSTM)分类器模型进行融合,发现任务识别准确率达到96.15%,伴随着仅6.453秒的平均响应时间-显著优于可比模型。该系统显着增强了经验保真度,现实主义,交互性,和内容深度,改善孤立感觉互动中固有的局限性。这种增强显着提高了艺术教学法的水准,并增强了学习效能,从而实现艺术教育的优化。
    Numerous impediments beset contemporary art education, notably the unidimensional delivery of content and the absence of real-time interaction during instructional sessions. This study endeavors to surmount these challenges by devising a multimodal perception system entrenched in Internet of Things (IoT) technology. This system captures students\' visual imagery, vocalizations, spatial orientation, movements, ambient luminosity, and contextual data by harnessing an array of interaction modalities encompassing visual, auditory, tactile, and olfactory sensors. The synthesis of this manifold information about learning scenarios entails strategically placing sensors within physical environments to facilitate intuitive and seamless interactions. Utilizing digital art flower cultivation as a quintessential illustration, this investigation formulates tasks imbued with multisensory channel interactions, pushing the boundaries of technological advancement. It pioneers advancements in critical domains such as visual feature extraction by utilizing DenseNet networks and voice feature extraction leveraging SoundNet convolutional neural networks. This innovative paradigm establishes a novel art pedagogical framework, accentuating the importance of visual stimuli while enlisting other senses as complementary contributors. Subsequent evaluation of the usability of the multimodal perceptual interaction system reveals a remarkable task recognition accuracy of 96.15% through the amalgamation of Mel-frequency cepstral coefficients (MFCC) speech features with a long-short-term memory (LSTM) classifier model, accompanied by an average response time of merely 6.453 seconds-significantly outperforming comparable models. The system notably enhances experiential fidelity, realism, interactivity, and content depth, ameliorating the limitations inherent in solitary sensory interactions. This augmentation markedly elevates the caliber of art pedagogy and augments learning efficacy, thereby effectuating an optimization of art education.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    氨(NH3)是一种有害的大气污染物,是环境的重要指标,健康,和食品安全条件。具有柔性气体传感器的可穿戴设备提供方便的实时NH3监测能力。提出了一种支持物联网(IoT)的柔性氨气传感系统。该系统中的柔性气体传感器利用聚苯胺(PANI)与多壁碳纳米管(MWCNT)装饰作为敏感材料,涂覆在聚对苯二甲酸乙二醇酯(PET)基板上的银交叉指型电极上。气体传感器与其它电子部件组合以形成柔性电子系统。系统的IoT功能来自具有Wi-Fi功能的微控制器。灵活的气体传感器显示出值得称道的灵敏度,选择性,耐湿性,寿命长。从传感器获得的实验数据显示,0.3ppm的检测阈值非常低,与监测呼出气中氨浓度所需的规范保持一致,其通常范围从0.425到1.8ppm。此外,传感器对干扰气体的存在表现出可忽略的反应,如乙醇,丙酮,和甲醇,从而确保氨检测的高选择性。除了这些属性,传感器在一系列环境条件下保持一致的稳定性,包括不同的湿度水平,重复的弯曲循环,和不同的取向角度。一个便携式的,稳定,通过在边缘端收集数据,展示了用于实时氨传感的有效灵活的物联网系统解决方案,处理云中的数据,并在用户端显示数据。
    Ammonia (NH3) is a harmful atmospheric pollutant and an important indicator of environment, health, and food safety conditions. Wearable devices with flexible gas sensors offer convenient real-time NH3 monitoring capabilities. A flexible ammonia gas sensing system to support the internet of things (IoT) is proposed. The flexible gas sensor in this system utilizes polyaniline (PANI) with multiwall carbon nanotubes (MWCNTs) decoration as a sensitive material, coated on a silver interdigital electrode on a polyethylene terephthalate (PET) substrate. Gas sensors are combined with other electronic components to form a flexible electronic system. The IoT functionality of the system comes from a microcontroller with Wi-Fi capability. The flexible gas sensor demonstrates commendable sensitivity, selectivity, humidity resistance, and long lifespan. The experimental data procured from the sensor reveal a remarkably low detection threshold of 0.3 ppm, aligning well with the required specifications for monitoring ammonia concentrations in exhaled breath gas, which typically range from 0.425 to 1.8 ppm. Furthermore, the sensor demonstrates a negligible reaction to the presence of interfering gases, such as ethanol, acetone, and methanol, thereby ensuring high selectivity for ammonia detection. In addition to these attributes, the sensor maintains consistent stability across a range of environmental conditions, including varying humidity levels, repeated bending cycles, and diverse angles of orientation. A portable, stable, and effective flexible IoT system solution for real-time ammonia sensing is demonstrated by collecting data at the edge end, processing the data in the cloud, and displaying the data at the user end.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号