Inositol 1,4,5-trisphosphate receptor

肌醇 1, 4, 5 - 三磷酸受体
  • 文章类型: Journal Article
    肌醇1,4,5-三磷酸受体1型(ITPR1)是对许多基本细胞功能重要的细胞内Ca2+释放通道。与其关键的生理意义一致,ITPR1的突变与疾病相关。令人惊讶的是,迄今为止,几乎所有的疾病相关ITPR1突变都是功能丧失.尽管缺乏ITPR1功能获得(GOF)突变,由于ITPR1相互作用蛋白失调而增强的ITPR1功能被认为与共济失调有关,学习和记忆障碍,阿尔茨海默病(AD)进展,和慢性疼痛。然而,缺乏ITPR1GOF在疾病中作用的直接证据。为了确定ITPR1中的GOF本身是否具有病理后果,我们采用了一种新开发的小鼠模型,在通道的门控域中表达ITPR1突变,D2594K,这显著增加了通道对IP3激活的敏感性。行为研究表明,ITPR1-D2594K+/-突变小鼠表现出运动缺陷和肌肉力量降低。然而,与5xFADAD模型小鼠杂交时,ITPR1-D2594K+/-突变不会显著改变海马学习和记忆,也不会改变学习和记忆障碍.另一方面,与WT相比,ITPR1-D2594K+/-小鼠表现出对热和机械刺激的敏感性增加。有趣的是,R-卡维地洛治疗减弱了ITPR1-D2594K+/-小鼠中增强的热和机械伤害感受。因此,通道门控域中的ITPR1-D2594K+/-突变对运动运动和疼痛感知有显著影响,但对海马学习和记忆影响不大。
    Inositol 1,4,5-trisphosphate receptor type 1 (ITPR1) is an intracellular Ca2+ release channel important for a number of fundamental cellular functions. Consistent with its critical physiological significance, mutations in ITPR1 are associated with disease. Surprisingly, nearly all the disease-associated ITPR1 mutations characterized to date are loss of function. Despite the paucity of ITPR1 gain-of-function (GOF) mutations, enhanced ITPR1 function as a result of dysregulation by ITPR1 interacting proteins is thought to be associated with ataxia, learning and memory impairments, Alzheimer\'s disease (AD) progression, and chronic pain. However, direct evidence for the role of ITPR1 GOF in disease is lacking. To determine whether GOF in ITPR1 itself has pathological ramifications, we employed a newly developed mouse model expressing an ITPR1 mutation in the gating domain of the channel, D2594K, that markedly increased the channel\'s sensitivity to activation by IP3. Behavioral studies showed that the ITPR1-D2594K+/- mutant mice displayed motor deficits and reduced muscle strength. However, the ITPR1-D2594K+/- mutation did not significantly alter hippocampal learning and memory and did not change learning and memory impairments when crossed with the 5xFAD AD model mice. On the other hand, ITPR1-D2594K+/- mice exhibited increased sensitivity to thermal and mechanical stimulation compared to WT. Interestingly, R-carvedilol treatment attenuated the enhanced thermal and mechanical nociception in ITPR1-D2594K+/- mice. Thus, the ITPR1-D2594K+/- mutation in the channel\'s gating domain has a marked impact on motor movements and pain perception, but little effect on hippocampal learning and memory.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肌醇1,4,5-三磷酸受体1(ITPR1)是对许多细胞过程至关重要的细胞内Ca2+释放通道。尽管它无处不在的生理意义,迄今为止,ITPR1突变主要与运动障碍有关。令人惊讶的是,大多数疾病相关的ITPR1突变会导致功能丧失.这让我们对ITPR1相关病理学的理解奇怪地片面,关于ITPR1功能获得(GOF)的病理后果知之甚少。为此,我们产生了ITPR1门控结构域突变(D2594K),该突变显著增强了ITPR1的三磷酸肌醇(IP3)敏感性,并建立了表达该ITPR1-D2594K+/-GOF突变的小鼠模型.我们发现,杂合ITPR1-D2594K+/-突变小鼠表现出男性不育,无精子症,和顶体损失。此外,我们对在UKBiobank数据库中鉴定为可能与睾丸疾病相关的人ITPR1变异体V494I进行了功能鉴定.我们发现ITPR1-V494I变体显著增强了HEK293细胞中IP3诱导的Ca2+释放。因此,ITPR1多动症可能会增加睾丸功能障碍的风险。
    Inositol 1,4,5-trisphosphate receptor 1 (ITPR1) is an intracellular Ca2+ release channel critical for numerous cellular processes. Despite its ubiquitous physiological significance, ITPR1 mutations have thus far been linked to primarily movement disorders. Surprisingly, most disease-associated ITPR1 mutations generate a loss of function. This leaves our understanding of ITPR1-associated pathology oddly one-sided, as little is known about the pathological consequences of ITPR1 gain of function (GOF). To this end, we generated an ITPR1 gating domain mutation (D2594K) that substantially enhanced the inositol trisphosphate (IP3 )-sensitivity of ITPR1, and a mouse model expressing this ITPR1-D2594K+/- GOF mutation. We found that heterozygous ITPR1-D2594K+/- mutant mice exhibited male infertility, azoospermia, and acrosome loss. Furthermore, we functionally characterized a human ITPR1 variant V494I identified in the UK Biobank database as potentially associated with disorders of the testis. We found that the ITPR1-V494I variant significantly enhanced IP3 -induced Ca2+ release in HEK293 cells. Thus, ITPR1 hyperactivity may increase the risk of testicular dysfunction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Disruption of intracellular calcium (Ca2+) homeostasis is implicated in inflammatory responses. Here we investigated endoplasmic reticulum (ER) Ca2+ efflux through the Inositol 1,4,5-trisphosphate receptor (IP3R) as a potential mechanism of inflammatory pathophysiology in a ventilator-induced lung injury (VILI) mouse model.
    C57BL/6 mice were exposed to mechanical ventilation using high tidal volume (HTV). Mice were pretreated with the IP3R agonist carbachol, IP3R inhibitor 2-aminoethoxydiphenyl borate (2-APB) or the Ca2+ chelator BAPTA-AM. Lung tissues and bronchoalveolar lavage fluid (BALF) were collected to measure Ca2+ concentrations, inflammatory responses and mRNA/protein expression associated with ER stress, NLRP3 inflammasome activation and inflammation. Analyses were conducted in concert with cultured murine lung cell lines.
    Lungs from mice subjected to HTV displayed upregulated IP3R expression in ER and mitochondrial-associated-membranes (MAMs), with enhanced formation of MAMs. Moreover, HTV disrupted Ca2+ homeostasis, with increased flux from the ER to the cytoplasm and mitochondria. Administration of carbachol aggravated HTV-induced lung injury and inflammation while pretreatment with 2-APB or BAPTA-AM largely prevented these effects. HTV activated the IRE1α and PERK arms of the ER stress signaling response and induced mitochondrial dysfunction-NLRP3 inflammasome activation in an IP3R-dependent manner. Similarly, disruption of IP3R/Ca2+ in MLE12 and RAW264.7 cells using carbachol lead to inflammatory responses, and stimulated ER stress and mitochondrial dysfunction.
    Increase in IP3R-mediated Ca2+ release is involved in the inflammatory pathophysiology of VILI via ER stress and mitochondrial dysfunction. Antagonizing IP3R/Ca2+ and/or maintaining Ca2+ homeostasis in lung tissue represents a prospective treatment approach for VILI.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The aberrant release of endoplasmic reticulum (ER) calcium leads to the disruption of intracellular calcium homeostasis, which is associated with the occurrence of ER stress and closely related to the pathogenesis of liver damage. Mannan-binding lectin (MBL) is a soluble calcium-dependent protein synthesized primarily in hepatocytes and is a pattern recognition molecule in the innate immune system. MBL deficiency is highly prevalent in the population and has been reported to be associated with susceptibility to several liver diseases. We here showed that genetic MBL ablation strongly sensitized mice to ER stress-induced liver injury. Mechanistic studies established that MBL directly interacted with ER-resident chaperone immunoglobulin heavy chain binding protein (BiP), and MBL deficiency accelerated the separation of PKR-like ER kinase (PERK) from BiP during hepatic ER stress. Moreover, MBL deficiency led to enhanced activation of the PERK-C/EBP-homologous protein (CHOP) pathway and initiates an inositol 1,4,5-trisphosphate receptor (IP3R)-mediated calcium release from the ER, thereby aggravating the hepatic ER stress response. Our results demonstrate an unexpected function of MBL in ER calcium homeostasis and ER stress response, thus providing new insight into the liver injury related to ER stress in patients with MBL deficiency.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Sphingosine-1-phosphate (S1P) has been shown to possess pro-hypertrophic properties in the heart, but the detailed molecular mechanism that underlies the pathological process is rarely explored. In the present study, we aim to explore the role of S1P-mediated intracellular Ca2+ signaling, with a focus on sarcoplasmic reticulum (SR)-mitochondria communication, in cardiomyocyte hypertrophy. Cultured neonatal rat ventricular myocytes (NRVMs) displayed significantly hypertrophic growth after treatment with 1 μmol/L S1P for 48 h, as indicated by the cell surface area or mRNA expressions of hypertrophic marker genes (ANP, BNP and β-MHC). Importantly, mitochondrial Ca2+ and reactive oxygen species (ROS) levels were dramatically elevated upon S1P stimulation, and pharmacological blockage of which abolished NRVM hypertrophy. 0.5 Hz electrical pacing induced similar cytosolic Ca2+ kinetics to S1P stimulation, but unaffected the peak of mitochondrial [Ca2+]. With interference of the expression of type 2 inositol 1,4,5-trisphosphate receptors (IP3R2), which are unemployed in electrical paced Ca2+ activity but may be activated by S1P, alteration in mitochondrial Ca2+ as well as the hypertrophic effect in NRVMs under S1P stimulation were attenuated. The hypertrophic effect of S1P can also be abolished by pharmacological block of S1PR1 or Gi signaling. Collectively, our study highlights the mechanistic role of IP3R2-mediated excess SR-mitochondria Ca2+ transport in S1P-induced cardiomyocyte hypertrophy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    C6-ceramide is an exogenous short-chain ceramide which can induce apoptosis of multiple cancer cells. Salivary adenoid cystic carcinoma (SACC) is a common salivary gland cancer, which possesses of high rate of local recurrence and distant metastasis. The mechanism of ceramide-induced SACC-83 and SACC-LM cell apoptosis has not been revealed. In our study, gene expression microarray was used to discover that the unfolded protein response (UPR) pathway, especially PRKR-like endoplasmic reticulum kinase (PERK) pathway, was the major activated pathway after treatment of c6-ceramide. D1ER, an endoplasmic-reticulum-targeted Ca2+ indicator, was used to measure Ca2+ release from endoplasmic reticulum (ER) dynamically. We found that inositol 1,4,5-trisphosphate receptor 3 (IP3R3) was activated, leading to Ca2+ release from ER, soon after c6-ceramide treatment. IP3R3 silencing could block UPR, although it could not prevent SACC-83 and SACC-LM cells from apoptosis. Moreover, we found that C/EBP-homologous protein could upregulate in a UPR-independent way. Mitochondria outer membrane permeabilization might play an important role in inducing SACC cell apoptosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    SHANK3 is one of the scaffolding proteins in the postsynaptic density (PSD). Pain perception and underlying mechanisms were investigated in Shank3 exon 21 deficient (Shank3△C) mice. Sixty-six mice were attributed according to their genotype to three groups: (1) wild-type (WT), (2) heterozygous Shank3△C/+, and (3) homozygous Shank3△C/△C. Complete Freund\'s adjuvant (CFA) was used to induce inflammatory pain, and thermal hyperalgesia was determined. CFA treatment reduced the thermal threshold in the WT group; groups expressing mutations of Shank3 (△C/+ and △C/△C) had higher thresholds after CFA administration compared to the WT group. Mice with Shank3 mutations (△C/+ or △C/△C) had a lower expression of GluN2A and IP3R proteins and a higher expression of mGluR5 protein in the PSD compared to WT mice without changes in GluN1, GluN2B, and Homer expression. The crosslinking of Homer-IP3R, but not Homer-mGluR5, was decreased in the total lysate. Deficit of Shank3 exon 21 may lead to impaired perception of thermal pain in mice under inflammatory conditions. This impairment may result from protein dysregulation in the PSD like downregulation of the GluN2A subunit, which may reduce NMDAR-mediated currents, and/or decreased crosslinking between Homer and IP3R, which may reduce the release of Ca2+ from intracellular stores.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    TMEM16ACa2+激活的Cl-通道在胰腺腺泡细胞中表达并参与炎症相关疾病。TMEM16A是否有助于急性胰腺炎(AP)的发病机制尚不清楚。这里,我们发现TMEM16A在胰腺组织中的表达增加与胰腺组织和cerulein诱导的AP小鼠模型血清中的白细胞介素-6(IL-6)水平相关.IL-6处理通过IL-6受体(IL-6R)/信号转导和转录激活因子3(STAT3)信号通路促进AR42J胰腺腺泡细胞中TMEM16A的表达。此外,TMEM16A与肌醇1,4,5-三磷酸受体(IP3R)共免疫沉淀,并被IP3R介导的Ca2释放激活。TMEM16A抑制降低了由cerulein诱导的IP3R介导的Ca2释放。此外,TMEM16A过表达激活核因子-κB(NFκB)并通过增加细胞内Ca2+增加IL-6释放。shRNA敲除TMEM16A降低了ca2诱导的NFκB激活。TMEM16A抑制剂通过降低AR42J细胞中的通道活性和降低TMEM16A蛋白水平来抑制NFκB的活化,并改善了cerulein诱导的AP小鼠的胰腺损伤。本研究确定了AP发病机制的新机制,IL-6通过IL-6R/STAT3信号激活促进TMEM16A表达,TMEM16A过表达通过IP3R/Ca2+/NFκB信号激活增加胰腺腺泡细胞中IL-6的分泌。抑制TMEM16A可能是治疗AP的新的潜在策略。
    TMEM16A Ca2+-activated Cl- channels are expressed in pancreatic acinar cells and participate in inflammation-associated diseases. Whether TMEM16A contributes to the pathogenesis of acute pancreatitis (AP) remains unknown. Here, we found that increased TMEM16A expression in the pancreatic tissue was correlated with the interleukin-6 (IL-6) level in the pancreatic tissue and in the serum of a cerulein-induced AP mouse model. IL-6 treatment promoted TMEM16A expression in AR42J pancreatic acinar cells via the IL-6 receptor (IL-6R)/signal transducers and activators of transcription 3 (STAT3) signaling pathway. In addition, TMEM16A was co-immunoprecipitated with the inositol 1,4,5-trisphosphate receptor (IP3R) and was activated by IP3R-mediated Ca2+ release. TMEM16A inhibition reduced the IP3R-mediated Ca2+ release induced by cerulein. Furthermore, TMEM16A overexpression activated nuclear factor-κB (NFκB) and increased IL-6 release by increasing intracellular Ca2+. TMEM16A knockdown by shRNAs reduced the cerulein-induced NFκB activation by Ca2+. TMEM16A inhibitors inhibited NFκB activation by decreasing channel activity and reducing TMEM16A protein levels in AR42J cells, and it ameliorated pancreatic damage in cerulein-induced AP mice. This study identifies a novel mechanism underlying the pathogenesis of AP by which IL-6 promotes TMEM16A expression via IL-6R/STAT3 signaling activation, and TMEM16A overexpression increases IL-6 secretion via IP3R/Ca2+/NFκB signaling activation in pancreatic acinar cells. TMEM16A inhibition may be a new potential strategy for treating AP.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    In the body, extracellular stimuli produce inositol 1,4,5-trisphosphate (IP3), an intracellular chemical signal that binds to the IP3 receptor (IP3R) to release calcium ions (Ca2+) from the endoplasmic reticulum. In the past 40 years, the wide-ranging functions mediated by IP3R and its genetic defects causing a variety of disorders have been unveiled. Recent cryo-electron microscopy and X-ray crystallography have resolved IP3R structures and begun to integrate with concurrent functional studies, which can explicate IP3-dependent opening of Ca2+-conducting gates placed ∼90 Å away from IP3-binding sites and its regulation by Ca2+. This review highlights recent research progress on the IP3R structure and function. We also propose how protein plasticity within IP3R, which involves allosteric gating and assembly transformations accompanied by rapid and chronic structural changes, would enable it to regulate diverse functions at cellular microdomains in pathophysiological states.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    All seven canonical transient potential receptor (TRPC1-7) channel members are expressed in mammalian airway smooth muscle cells (ASMCs). Among this family, TRPC3 channel plays an important role in the control of the resting [Ca2+]i and agonist-induced increase in [Ca2+]i. This channel is significantly upregulated in molecular expression and functional activity in airway diseases. The upregulated channel significantly augments the resting [Ca2+]i and agonist-induced increase in [Ca2+]i, thereby exerting a direct and essential effect in airway hyperresponsiveness. The increased TRPC3 channel-mediated Ca2+ signaling also results in the transcription factor nuclear factor-κB (NF-κB) activation via protein kinase C-α (PKCα)-dependent inhibitor of NFκB-α (IκBα) and calcineurin-dependent IκBβ signaling pathways, which upregulates cyclin-D1 expression and causes cell proliferation, leading to airway remodeling. TRPC3 channel may further interact with intracellular release Ca2+ channels, Orai channels and Ca2+-sensing stromal interaction molecules, mediating important cellular responses in ASMCs and the development of airway diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号