Golgi apparatus

高尔基装置
  • 文章类型: Journal Article
    背景:除了原发性伤害外,与BBB破坏和免疫炎症反应相关的继发性损伤在脑出血(ICH)中也起重要作用。高尔基体在ICH状态中起着重要作用。
    方法:建立SD大鼠ICH模型和GM130沉默ICH模型。使用Garcia评分对大鼠的神经缺陷进行评分。血脑屏障(BBB)完整性通过外渗伊文思蓝的量进行评估,和紧密连接蛋白。通过Western-blot检测PD-L1和GM130的表达,免疫荧光染色显示小胶质细胞的亚型。
    结果:与ICH组相比,GM130沉默的ICH大鼠的神经功能缺损恶化,血肿体积增大。埃文的蓝色外溢也加剧了。GM130在血肿周围组织中的表达进一步降低,高尔基体的形态和结构被进一步破坏。同时,GM130缺陷导致PD-L1表达减少,小胶质细胞更多分化为M1亚型.
    结论:我们证明GM130可以影响BBB的完整性,并通过调节ICH后的PD-L1在神经炎症中起作用。GM130的操作可能是ICH的一个有前途的治疗靶点。
    BACKGROUND: In addition to primary injury, secondary injuries related to BBB disruption and immune-inflammatory response also play an important role in intracerebral hemorrhage (ICH). And the Golgi apparatus play an important role in the state of ICH.
    METHODS: ICH model and GM130-silencing ICH model were established in SD rats. The Garcia score was used to score the neurological defects of the rats. Blood-brain barrier (BBB) integrity were assessed by amount of extravasated Evans blue, and tight junction proteins. The expression of PD-L1 and GM130were detected through Western-blot and the subtype of microglia was showing with Immunofluorescence staining.
    RESULTS: Compared with the ICH group, GM130-silencing ICH rats got a worsened neurological deficit and enlarged volume of the hematoma. Evan\'s blue extravasation aggravated as well. The expression of GM130 in peri-hematoma tissue was further decreased, and the morphology and structure of the Golgi apparatus were further damaged. Meanwhile, the GM130 deficit resulted in decreased expression of PD-L1 and more polarization of microglia to the M1 subtype.
    CONCLUSIONS: We demonstrate that GM130 could influence the integrity of BBB and plays a role in neuroinflammation via regulation of PD-L1 after ICH. The manipulation of GM130 might be a promising therapeutical target in ICH.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    高尔基体(GA),处理的细胞器,排序,运输由内质网合成的蛋白质,还参与了许多与癌症相关的细胞过程,比如血管生成,先天免疫反应,和肿瘤的侵袭和迁移。我们旨在构建基于GA相关遗传信息的乳腺癌(BC)预后预测模型,以比现有模型更准确地评估BC患者的预后,并对患者进行分层以进行临床治疗。在这项研究中,癌症基因组图谱-乳腺浸润性癌被用作训练队列,乳腺癌国际联盟的分子分类学队列被用作验证队列。使用生物信息学方法,我们构建了GA相关基因风险评分(GRS)。GRS用于将BC患者分为高GRS组和低GRS组。和功能分析,生存分析,突变分析,免疫景观分析,并进行代谢分析比较2组。最后,建立了临床应用的列线图.GRS模型中的基因主要与糖代谢途径有关,两组患者的主要突变为TP53和CHD1突变。高GRS组的突变率大于低GRS组。高GRS组有较高的肿瘤免疫活性糖酵解;磷酸戊糖途径是该组的主要代谢途径,而脂肪酸氧化和谷氨酰胺分解代谢倾向于在低GRS组中占主导地位。GA相关基因用于构建BC患者的预测模型,对预测预后具有较高的准确性。与GRS相关的突变主要是TP53和CDH1。有趣的是,GRS在基因表达和功能富集方面与葡萄糖代谢相关。总之,GRS相关基因在糖代谢中的作用值得进一步研究。
    The Golgi apparatus (GA), an organelle that processes, sorts, and transports proteins synthesized by the endoplasmic reticulum, is also involved in many cellular processes associated with cancer, such as angiogenesis, the innate immune response, and tumor invasion and migration. We aimed to construct a breast cancer (BC) prognosis prediction model based on GA-related genetic information to evaluate the prognosis of patients with BC more accurately than existing models and to stratify patients for clinical therapy. In this study, The Cancer Genome Atlas-breast invasive carcinoma was used as the training cohort, and the Molecular Taxonomy of Breast Cancer International Consortium cohort was used as the validation cohort. Using bioinformatics methods, we constructed a GA-related gene risk score (GRS). The GRS was used to divide BC patients into a high-GRS group and a low-GRS group, and functional analysis, survival analysis, mutation analysis, immune landscape analysis, and metabolic analysis were performed to compare the 2 groups. Finally, a nomogram was constructed for clinical application. The genes in the GRS model were mainly related to the glucose metabolism pathway, and the main mutations in the 2 groups of patients were mutations in TP53 and CHD1. The mutation rate in the high-GRS group was greater than that in the low-GRS group. The high GRS group had higher tumor immune activity glycolysis; the pentose phosphate pathway tended to be the dominant metabolic pathways in this group, while fatty acid oxidation and glutamine catabolism tended to be dominant in the low-GRS group. GA-related genes were used to construct a prediction model for BC patients and had high accuracy in predicting prognosis. The mutations associated with the GRS are mainly TP53 and CDH1. Interestingly, the GRS is correlated with glucose metabolism in terms of gene expression and functional enrichment. In summary, the role of GRS-related genes in glucose metabolism is worthy of further study.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    糖尿病,一种普遍的慢性病,显著增加了COVID-19的死亡风险,但潜在的机制仍然难以捉摸。新的证据表明组织蛋白酶L(CTSL)与糖尿病并发症有关,包括肾病和视网膜病变。我们先前的研究将CTSL确定为促进SARS-CoV-2感染的关键蛋白酶。这里,我们证明糖尿病患者的血液CTSL水平升高,促进SARS-CoV-2感染。慢性高血糖与糖尿病患者的CTSL浓度和活动呈正相关,而急性高血糖会增加健康个体的CTSL活性。体外研究显示高糖,但不是胰岛素,在野生型细胞中促进SARS-CoV-2感染,CTSL敲除细胞显示降低的易感性。利用糖尿病和非糖尿病患者的肺组织样本,与Leprdb/dbmouse和Leprdb/+小鼠一起,我们说明了在糖尿病条件下,人和小鼠的CTSL活性增加。机械上,高葡萄糖水平促进CTSL成熟并通过内质网(ER)-高尔基体-溶酶体轴从内质网(ER)转位到溶酶体。我们的发现强调了高血糖诱导的CTSL成熟在糖尿病合并症和并发症中的关键作用。
    糖尿病患者患严重COVID-19并死于这种疾病的风险更大,这是由一种称为SARS-CoV-2的病毒引起的。与糖尿病相关的高血糖水平似乎是导致这种风险增加的因素。然而,糖尿病是一种复杂的疾病,包括一系列代谢紊乱,因此,其他因素可能会有所贡献。先前的研究确定了一种称为组织蛋白酶L的酶与糖尿病患者中更严重的COVID-19之间的联系。已知升高的组织蛋白酶L水平有助于糖尿病并发症。如肾脏损伤和视力丧失。还显示组织蛋白酶L有助于SARS-CoV-2进入并感染细胞。这提出了一个问题,即升高的组织蛋白酶L是否导致糖尿病患者COVID-19脆弱性增加。为了调查,他,赵等人。监测COVID-19患者的疾病严重程度和组织蛋白酶L水平。这证实了糖尿病患者的COVID-19更为严重,组织蛋白酶L水平越高,疾病越严重。分析还显示组织蛋白酶L活性随着血糖水平的增加而增加。在实验室实验中,糖尿病患者血液中暴露于葡萄糖或液体的细胞更容易感染SARS-CoV-2,而经过基因修饰而缺乏组织蛋白酶L的细胞对感染的抵抗力更强。进一步的实验表明,这是由于葡萄糖促进了细胞中组织蛋白酶L的成熟和迁移。他的发现,赵等人。这有助于解释为什么糖尿病患者更容易患上严重或致命的COVID-19。因此,控制糖尿病患者的血糖水平可能有助于预防或减轻疾病的严重程度。此外,针对组织蛋白酶L的治疗也可能有助于治疗COVID-19,特别是在糖尿病患者中,尽管需要更多的研究来开发和测试这些治疗方法。
    Diabetes, a prevalent chronic condition, significantly increases the risk of mortality from COVID-19, yet the underlying mechanisms remain elusive. Emerging evidence implicates Cathepsin L (CTSL) in diabetic complications, including nephropathy and retinopathy. Our previous research identified CTSL as a pivotal protease promoting SARS-CoV-2 infection. Here, we demonstrate elevated blood CTSL levels in individuals with diabetes, facilitating SARS-CoV-2 infection. Chronic hyperglycemia correlates positively with CTSL concentration and activity in diabetic patients, while acute hyperglycemia augments CTSL activity in healthy individuals. In vitro studies reveal high glucose, but not insulin, promotes SARS-CoV-2 infection in wild-type cells, with CTSL knockout cells displaying reduced susceptibility. Utilizing lung tissue samples from diabetic and non-diabetic patients, alongside Leprdb/dbmice and Leprdb/+mice, we illustrate increased CTSL activity in both humans and mice under diabetic conditions. Mechanistically, high glucose levels promote CTSL maturation and translocation from the endoplasmic reticulum (ER) to the lysosome via the ER-Golgi-lysosome axis. Our findings underscore the pivotal role of hyperglycemia-induced CTSL maturation in diabetic comorbidities and complications.
    People with diabetes are at greater risk of developing severe COVID-19 and dying from the illness, which is caused by a virus known as SARS-CoV-2. The high blood sugar levels associated with diabetes appear to be a contributing factor to this heightened risk. However, diabetes is a complex condition encompassing a range of metabolic disorders, and it is therefore likely that other factors may contribute. Previous research identified a link between an enzyme called cathepsin L and more severe COVID-19 in people with diabetes. Elevated cathepsin L levels are known to contribute to diabetes complications, such as kidney damage and vision loss. It has also been shown that cathepsin L helps SARS-CoV-2 to enter and infect cells. This raised the question of whether elevated cathepsin L is responsible for the increased COVID-19 vulnerability in patients with diabetes. To investigate, He, Zhao et al. monitored disease severity and cathepsin L levels in patients with COVID-19. This confirmed that people with diabetes had more severe COVID-19 and that higher levels of cathepsin L are linked to more severe disease. Analysis also revealed that cathepsin L activity increases as blood glucose levels increase. In laboratory experiments, cells exposed to glucose or fluid from the blood of people with diabetes were more easily infected with SARS-CoV-2, with cells genetically modified to lack cathepsin L being more resistant to infection. Further experiments revealed this was due to glucose promoting maturation and migration of cathepsin L in the cells. The findings of He, Zhao et al. help to explain why people with diabetes are more likely to develop severe or fatal COVID-19. Therefore, controlling blood glucose levels in people with diabetes may help to prevent or reduce the severity of the disease. Additionally, therapies targeting cathepsin L could also potentially help to treat COVID-19, especially in patients with diabetes, although more research is needed to develop and test these treatments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胰高血糖素样肽1(GLP1),它主要从肠道的肠内分泌细胞(EEC)中的胰高血糖素原加工和裂解,作用于胰腺细胞中的GLP1受体以刺激胰岛素分泌和抑制胰高血糖素分泌。然而,GLP1处理没有被完全理解。这里,我们显示网状结构4B(Nogo-B),内质网(ER)驻留蛋白,与胰高血糖素原的主要胰高血糖素原片段相互作用以将胰高血糖素原保留在ER上,从而抑制PCSK1介导的高尔基体中胰高血糖素原的裂解。男性2型糖尿病(T2DM)小鼠的肠道Nogo-B基因敲除会增加GLP1和胰岛素水平,并降低胰高血糖素水平,从而减轻胰腺损伤和胰岛素抵抗。最后,我们发现糖尿病患者EECs中Nogo-B表达异常升高并抑制胰高血糖素原裂解。我们的研究揭示了在GLP1生产过程中涉及Nogo-B的亚细胞调节过程,并表明肠道Nogo-B是T2DM的潜在治疗靶标。
    Glucagon-like peptide 1 (GLP1), which is mainly processed and cleaved from proglucagon in enteroendocrine cells (EECs) of the intestinal tract, acts on the GLP1 receptor in pancreatic cells to stimulate insulin secretion and to inhibit glucagon secretion. However, GLP1 processing is not fully understood. Here, we show that reticulon 4B (Nogo-B), an endoplasmic reticulum (ER)-resident protein, interacts with the major proglucagon fragment of proglucagon to retain proglucagon on the ER, thereby inhibiting PCSK1-mediated cleavage of proglucagon in the Golgi. Intestinal Nogo-B knockout in male type 2 diabetes mellitus (T2DM) mice increases GLP1 and insulin levels and decreases glucagon levels, thereby alleviating pancreatic injury and insulin resistance. Finally, we identify aberrantly elevated Nogo-B expression and inhibited proglucagon cleavage in EECs from diabetic patients. Our study reveals the subcellular regulatory processes involving Nogo-B during GLP1 production and suggests intestinal Nogo-B as a potential therapeutic target for T2DM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物的内膜系统由相互连接的膜细胞器组成,这些细胞器有助于细胞内的结构和功能。这些细胞器包括内质网(ER),高尔基体,液泡,跨高尔基网络,和前液泡室或多泡体。通过囊泡介导的转运,分泌的蛋白质在ER中合成,随后沿着分泌途径转运至液泡或细胞外,以实现特定功能。遗传筛选是研究植物蛋白分泌的重要方法。它需要识别基因突变导致的表型差异,如甲磺酸乙酯,T-DNA插入,RNAi,研究基因功能并发现具有特定性状或基因功能的突变体。通过遗传筛选对植物蛋白分泌的研究取得了重大进展。在这个协议中,我们提供了使用基因筛选方法研究蛋白质分泌途径的分步指南.我们使用拟南芥的游离1抑制剂和Marchantiapolymorpha的油体突变体的例子。此外,我们对基因筛选进行了概述,并简要总结了蛋白质分泌研究领域的新兴技术。
    The endomembrane system in plants is composed of interconnected membrane organelles that contribute to intracellular structure and function. These organelles include the endoplasmic reticulum (ER), Golgi apparatus, vacuole, trans-Golgi network, and prevacuolar compartment or multivesicular body. Through vesicle-mediated transport, secreted proteins are synthesized in the ER and subsequently transported along the secretory pathway to the vacuole or outside of cells to fulfill specialized functions. Genetic screening is a crucial method for studying plant protein secretion. It entails identifying phenotypic differences resulting from genetic mutations, such as ethyl methanesulfonate, T-DNA insertion, and RNAi, to investigate gene function and discover mutants with specific traits or gene functions. Significant progress has been achieved in the study of plant protein secretion through genetic screening. In this protocol, we provide a step-by-step guide to studying the protein secretion pathway using a genetic screen approach. We use the example of the free 1 suppressor of Arabidopsis thaliana and oil body mutants of Marchantia polymorpha. Additionally, we offer an overview of genetic screening and briefly summarize the emerging technologies in the field of protein secretion research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    体外重建研究可以对复杂的生化过程进行可控和逐步的研究。在酵母和哺乳动物中,COPII囊泡的体外重建标志着表征内质网至高尔基体顺行运输途径的关键点,并揭示了囊泡如何介导拓扑等效区室之间的选择性和可靠运输。通过在无细胞环境中提供必要的生理条件,它能够解剖囊泡形成所需的基本成分。为了富集和纯化体内少量的膜结合区室,它简化了通过不同的外部刺激或上游信号对囊泡调节的评估。这里,我们描述了用于重建植物COPII囊泡的植物微粒体和细胞质的制备。纯化的囊泡可用于进一步的生物化学或显微镜分析。
    In vitro reconstitution studies enable the controllable and stepwise investigation of complicated biochemical processes. In yeast and mammals, in vitro reconstitution of COPII vesicles marked a pivotal point in characterizing the endoplasmic reticulum-to-Golgi anterograde trafficking route and revealed how vesicles mediate the selective and reliable transportation among topologically equivalent compartments. By providing the necessary physiological conditions in a cell-free environment, it enables the dissection of essential components required for the vesicle formation. To enrich and purify the small amount in vivo membrane-bounded compartments, it simplifies the evaluation of vesicle regulation by distinct external stimuli or upstream signals. Here, we describe the preparation of plant microsomes and cytosol for the reconstitution of plant COPII vesicles. Purified vesicles can be used for further biochemical or microscopical analyses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    不利条件,如长期干旱和高盐度,对植物的生存和农业产量构成威胁。植物激素ABA在植物胁迫适应的调节中起着关键作用,并且通常长时间维持在高水平。虽然人们对早期信号传导阶段的ABA信号感知和激活了解很多,ABA信号脱敏的分子机制仍然未知。在这里,我们证明在内质网(ER)-高尔基网络中,ABA信号的关键调节剂,SnRK2.2/2.3,进行N-糖基化,促进它们从拟南芥根中的核重新分布到过氧化物酶体,并在延长的ABA信号传导过程中影响核中的转录反应。在过氧化物酶体膜上,SnRK2s可以与葡萄糖-6-磷酸(G6P)/磷酸盐转运蛋白1(GPT1)相互作用,通过增加过氧化物酶体氧化戊糖磷酸途径(OPPP)的活性来维持NADPH稳态。所产生的NADPH的维持对于过氧化氢(H2O2)积累的调制至关重要,从而减轻ABA诱导的根生长抑制。SnRK2s的亚细胞动力学,由N-糖基化介导,表明ABA反应从细胞核中的转录调节过渡到过氧化物酶体中的代谢过程,帮助植物适应长期的环境压力。
    Unfavourable conditions, such as prolonged drought and high salinity, pose a threat to the survival and agricultural yield of plants. The phytohormone ABA plays a key role in the regulation of plant stress adaptation and is often maintained at high levels for extended periods. While much is known about ABA signal perception and activation in the early signalling stage, the molecular mechanism underlying desensitization of ABA signalling remains largely unknown. Here we demonstrate that in the endoplasmic reticulum (ER)-Golgi network, the key regulators of ABA signalling, SnRK2.2/2.3, undergo N-glycosylation, which promotes their redistribution from the nucleus to the peroxisomes in Arabidopsis roots and influences the transcriptional response in the nucleus during prolonged ABA signalling. On the peroxisomal membrane, SnRK2s can interact with glucose-6-phosphate (G6P)/phosphate translocator 1 (GPT1) to maintain NADPH homeostasis through increased activity of the peroxisomal oxidative pentose phosphate pathway (OPPP). The resulting maintenance of NADPH is essential for the modulation of hydrogen peroxide (H2O2) accumulation, thereby relieving ABA-induced root growth inhibition. The subcellular dynamics of SnRK2s, mediated by N-glycosylation suggest that ABA responses transition from transcriptional regulation in the nucleus to metabolic processes in the peroxisomes, aiding plants in adapting to long-term environmental stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    干扰素基因的刺激物(STING)是先天免疫信号通路中的关键介质,从各种DNA受体转导信号,在天然免疫过程中起关键作用。在细胞静止期间,STING蛋白位于内质网(ER),其激活通常通过cGAS-STING信号通路发生。激活后,STING蛋白被运送到高尔基体,从而启动下游信令级联。囊泡运输是ER和高尔基体之间STING蛋白运输的主要机制,COPII介导从急诊室到高尔基体的顺行运输,而COPI负责逆行运输。许多因素影响这些运输过程,从而对STING蛋白表达发挥促进或抑制作用。一到达高尔基体,为了防止过度激活,STING蛋白被转运到后高尔基体区室进行降解。除了常规的溶酶体降解途径,ESCRT也已被鉴定为STING蛋白的降解途径之一。这篇综述总结了STING膜运输途径的最新发现,强调它们对细胞因子产生的调节的贡献,免疫细胞的激活,以及免疫信号通路的协调。
    Stimulator of Interferon Genes (STING) serves as a pivotal mediator in the innate immune signaling pathway, transducing signals from various DNA receptors and playing a crucial role in natural immune processes. During cellular quiescence, STING protein resides in the endoplasmic reticulum (ER), and its activation typically occurs through the cGAS-STING signaling pathway. Upon activation, STING protein is transported to the Golgi apparatus, thereby initiating downstream signaling cascades. Vesicular transport serves as the primary mechanism for STING protein trafficking between the ER and Golgi apparatus, with COPII mediating anterograde transport from the ER to Golgi apparatus, while COPI is responsible for retrograde transport. Numerous factors influence these transport processes, thereby exerting either promoting or inhibitory effects on STING protein expression. Upon reaching the Golgi apparatus, to prevent over-activation, STING protein is transported to post-Golgi compartments for degradation. In addition to the conventional lysosomal degradation pathway, ESCRT has also been identified as one of the degradation pathways for STING protein. This review summarizes the recent findings on the membrane trafficking pathways of STING, highlighting their contributions to the regulation of cytokine production, the activation of immune cells, and the coordination of immune signaling pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    程序性细胞死亡(PCD)是细胞死亡的受控形式,在维持稳态中起着至关重要的作用。高尔基体在PCD和高尔基极性的早期事件中作为热点,一个重要的微环境因素,可以被视为生理状态的指标。结合高尔基靶向基团苯基磺酰胺作为电子受体基团和三苯胺作为电子供体基团,一种新型的高尔基靶向荧光探针GTO已被开发。GTO对极性显示出良好的灵敏度和选择性,其出色的光稳定性使其可用于长期细胞监测。在实践中,GTO表现出良好的细胞通透性和高尔基体靶向能力。根据我们的结果,GTO用于揭示PCD早期事件期间的极性增加,令人鼓舞的结果表明,GTO是监测高尔基体极性以及早期诊断和药物发现探索的成像工具。
    Programmed cell death (PCD) is a controlled form of cell death and it plays an essential role in maintaining homeostasis. Golgi apparatus works as the hotspot during the early event of PCD and Golgi polarity, a vital microenvironment factor, can be regarded as an indicator of physiological status. Combined Golgi-targeted group phenylsulfonamide as electron acceptor group and triphenylamine as electron donor group, a novel Golgi-targeted fluorescent probe GTO had been developed. GTO showed good sensitivity and selectivity to polarity and its remarkable photostability makes it potentially useful for long-term cellular monitoring. In practice, GTO demonstrated good cell permeability and Golgi targeting capabilities. According to our results, GTO was applied to reveal the polarity increase during the early event of PCD and the encouraging results illustrated that GTO was an imaging tool for monitoring polarity in Golgi apparatus and the exploration in early diagnosis and drug discovery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    揭开癌症和高尔基粘度之间错综复杂的关系仍然是一项艰巨的努力,主要是由于缺乏专门用于粘度测量的高尔基体特异性荧光探针。考虑到这个巨大的障碍,我们通过设计定制的高尔基特定粘度探针战胜了挑战,恰当地命名为GOL-V这种巧妙的创新包括粘度转子BODIPY复杂地连接到高尔基体靶向部分苯磺酰胺。GOL-V对粘度波动表现出显著的敏感性,当粘度值从2.63cP增加到937.28cP时,GOL-V的荧光强度增加了114倍。由于其在粘度升高的条件下抑制TICT状态的显著能力。此外,它在灵敏监测活细胞内高尔基粘度变化方面的功效也非常显著。令人惊讶的是,我们的努力不仅在细胞和组织水平上可视化高尔基粘度,而且在从癌症患者获得的临床组织样本中也达到了顶峰。利用GOL-V的威力,我们已经成功证明高尔基粘度可以作为检测癌症存在的辨别标记。这些特殊属性的融合牢固地确立了GOL-V作为一种非常有效的工具,在癌症诊断领域拥有巨大的潜力。
    Unveiling the intricate relationship between cancer and Golgi viscosity remains an arduous endeavor, primarily due to the lack of Golgi-specific fluorescent probes tailored for viscosity measurement. Considering this formidable obstacle, we have triumphed over the challenge by devising a bespoke Golgi-specific viscosity probe, aptly named GOL-V. This ingenious innovation comprises the viscosity rotor BODIPY intricately tethered to the Golgi-targeting moiety benzsulfamide. GOL-V exhibits remarkable sensitivity to fluctuations in viscosity, the fluorescence intensity of GOL-V increased 114-fold when the viscosity value was increased from 2.63 to 937.28 cP. Owing to its remarkable capacity to suppress the TICT state under conditions of heightened viscosity. Moreover, its efficacy in sensitively monitoring Golgi viscosity alterations within living cells is also very significant. Astonishingly, our endeavors have culminated in not only the visualization of Golgi viscosity at the cellular and tissue levels but also in the clinical tissue samples procured from cancer patients. Harnessing the prowess of GOL-V, we have successfully demonstrated that Golgi viscosity could serve as a discerning marker for detecting the presence of cancer. The convergence of these exceptional attributes firmly establishes GOL-V as an immensely potent instrument, holding immense potential in the realm of cancer diagnosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号