Au

免疫缺陷 41 伴有淋巴细胞增生和自身免疫
  • 文章类型: Journal Article
    背景:尽管最近取得了进展,但肺动脉高压的预后仍然很差,需要新的治疗选择。广泛的研究,包括我们的,已经揭示了缺氧诱导的肺动脉高压与高氧化应激有关。氧化铈纳米酶或纳米颗粒(CeNPs)具有模拟过氧化氢酶和超氧化物歧化酶功能的催化活性,并已被广泛用作抗氧化应激方法。然而,CeNPs是否能减弱低氧诱导的肺血管氧化应激和肺动脉高压尚不清楚.
    结果:在这项研究中,我们设计了一种新的二氧化铈纳米酶或纳米颗粒(AuCeNPs),表现出增强的酶活性。在低氧诱导的肺动脉高压模型中,AuCeNPs显着减弱了活性氧和细胞内钙浓度的增加,同时限制了肺动脉平滑肌细胞的增殖和肺血管收缩。此外,吸入雾化的AuCeNPs,但不是CeNPs,不仅可以预防而且可以缓解低氧诱导的大鼠肺动脉高压。AuCeNPs的益处与细胞内钙浓度的有限增加以及大鼠肺动脉平滑肌细胞中细胞外钙敏感受体(CaSR)活性和表达的增强有关。雾化的AuCeNPs显示出良好的安全性,全身动脉压,肝肾功能,血浆Ca2+水平,血液生化指标没有受到影响。
    结论:我们得出结论,AuCeNPs是一种改进的活性氧清除剂,可有效预防和治疗缺氧诱导的肺动脉高压。
    BACKGROUND: Despite recent advances the prognosis of pulmonary hypertension remains poor and warrants novel therapeutic options. Extensive studies, including ours, have revealed that hypoxia-induced pulmonary hypertension is associated with high oxidative stress. Cerium oxide nanozyme or nanoparticles (CeNPs) have displayed catalytic activity mimicking both catalase and superoxide dismutase functions and have been widely used as an anti-oxidative stress approach. However, whether CeNPs can attenuate hypoxia-induced pulmonary vascular oxidative stress and pulmonary hypertension is unknown.
    RESULTS: In this study, we designed a new ceria nanozyme or nanoparticle (AuCeNPs) exhibiting enhanced enzyme activity. The AuCeNPs significantly blunted the increase of reactive oxygen species and intracellular calcium concentration while limiting proliferation of pulmonary artery smooth muscle cells and pulmonary vasoconstriction in a model of hypoxia-induced pulmonary hypertension. In addition, the inhalation of nebulized AuCeNPs, but not CeNPs, not only prevented but also blunted hypoxia-induced pulmonary hypertension in rats. The benefits of AuCeNPs were associated with limited increase of intracellular calcium concentration as well as enhancement of extracellular calcium-sensing receptor (CaSR) activity and expression in rat pulmonary artery smooth muscle cells. Nebulised AuCeNPs showed a favorable safety profile, systemic arterial pressure, liver and kidney function, plasma Ca2+ level, and blood biochemical parameters were not affected.
    CONCLUSIONS: We conclude that AuCeNPs is an improved reactive oxygen species scavenger that effectively prevents and treats hypoxia-induced pulmonary hypertension.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Au涂层平面镜的损伤阈值,安装在大连相干光源的FEL-2光束线上的反射光学器件之一,中国,在远UV自由电子激光照射下进行评估。通过轮廓仪和光学显微镜对涂层的表面进行表征。还提出了这种现象的理论方法,通过应用常规的单脉冲损伤阈值计算,一维热扩散模型,以及有限元分析与ANSYS。
    The damage threshold of an Au-coated flat mirror, one of the reflective optics installed on the FEL-2 beamline of the Dalian Coherent Light Source, China, upon far-UV free-electron laser irradiation is evaluated. The surface of the coating is characterized by profilometer and optical microscope. A theoretical approach of the phenomenon is also presented, by application of conventional single-pulse damage threshold calculations, a one-dimensional thermal diffusion model, as well as finite-element analysis with ANSYS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    光催化CO2转化是减缓温室效应的一种有前景的办法。In2O3被广泛用于CO2的资源化转化,但仍存在一些缺点,窄的光吸收范围,低电荷分离和利用率。为了克服这些缺点,建立了NH2-UiO-66/Au/In2O3复合光催化剂,Au纳米粒子和NH2-UiO-66修饰在In2O3纳米棒表面。重要的是,载流子分离能力的提高归因于Au/In2O3界面处的肖特基结以及In2O3与NH2-UiO-66之间的异质结构。并且加宽的光吸收归因于由Au纳米颗粒引起的等离子体激元效应。此外,CO2吸附和活化的增加主要是由于NH2-UiO-66的孔隙率,从而大大提高了NH2-UiO-66/Au/In2O3纳米棒的光催化CO2RR效率。NH2-UiO-66/Au/In2O3的CO产率为8.56μmolg-1h-1,是In2O3的近45倍。这项工作将为设计高效复合光催化剂提供新的思路,以通过多功能成分协同增强来减少CO2。
    Photocatalytic CO2 conversion is a prospective way to mitigate greenhouse effect. In2O3 is widely used in the resource conversion of CO2, but still exists a few drawbacks containing limited CO2 capture and activation, narrow light absorption range, low charge separation and utilization. To overcome these disadvantages, an NH2-UiO-66/Au/In2O3 composite photocatalyst is built, with Au nanoparticles and NH2-UiO-66 decorated on the surface of In2O3 nanorods. Significantly, the improved carrier separation ability is attributed to the Schottky junction at the Au/In2O3 interface and the heterostructure between In2O3 and NH2-UiO-66. And the widened light absorption is attributed to the plasmon effect caused by Au nanoparticles. Moreover, the increase of CO2 adsorption and activation is mainly due to the porosity of NH2-UiO-66, thereby greatly improving photocatalytic CO2RR efficiency of NH2-UiO-66/Au/In2O3 nanorods. The CO yield of NH2-UiO-66/Au/In2O3 is 8.56 μmol g-1 h-1, which is nearly 45 times that of In2O3. This work will present a novel idea to design high-efficient composite photocatalysts for CO2 reduction by multifunctional component synergistic enhancement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    用I型胶原蛋白(Col)修饰的Au用作核心材料,与基质细胞衍生因子1α(SDF1α)交联,以研究生物学性能。使用扫描电子显微镜(SEM)对Au基纳米颗粒进行物理化学测定,动态光散射(DLS)和紫外可见(UV-Vis)和傅里叶变换红外光谱(FTIR)。使用间充质干细胞(MSC)使用MTT测定和测量活性氧(ROS)产生来评估该纳米颗粒的生物相容性。此外,评估了SDF-1α共轭纳米颗粒(Au-Col-SDF1α)的生物学效应,并探讨了其机制。此外,我们研究了这些缀合的纳米颗粒对MSCs向内皮细胞的细胞分化诱导潜力,神经元,成骨细胞和脂肪细胞。然后,我们最终探索了纳米颗粒的细胞进入和运输过程。使用小鼠动物模型和眶后窦注射,我们追踪体内生物分布以确定Au-Col-SDF1α纳米颗粒的生物安全性。总之,我们的结果表明,Au-Col是一种有前途的药物递送系统;它可以用于携带SDF1α以提高MSC的治疗效率。
    Au decorated with type I collagen (Col) was used as a core material to cross-link with stromal cell-derived factor 1α (SDF1α) in order to investigate biological performance. The Au-based nanoparticles were subjected to physicochemical determination using scanning electron microscopy (SEM), dynamic light scattering (DLS) and ultraviolet-visible (UV-Vis) and Fourier-transform infrared spectroscopy (FTIR). Mesenchymal stem cells (MSCs) were used to evaluate the biocompatibility of this nanoparticle using the MTT assay and measuring reactive oxygen species (ROS) production. Also, the biological effects of the SDF-1α-conjugated nanoparticles (Au-Col-SDF1α) were assessed and the mechanisms were explored. Furthermore, we investigated the cell differentiation-inducing potential of these conjugated nanoparticles on MSCs toward endothelial cells, neurons, osteoblasts and adipocytes. We then ultimately explored the process of cell entry and transportation of the nanoparticles. Using a mouse animal model and retro-orbital sinus injection, we traced in vivo biodistribution to determine the biosafety of the Au-Col-SDF1α nanoparticles. In summary, our results indicate that Au-Col is a promising drug delivery system; it can be used to carry SDF1α to improve MSC therapeutic efficiency.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    将苯直接和选择性氧化为苯酚是工业中的长期目标。尽管在均相催化方面已经做出了巨大的努力,在温和条件下通过非均相催化剂驱动该反应仍然是一个巨大的挑战。在这里,具有明确结构的单原子Au负载的MgAl层状双氢氧化物(Au1-MgAl-LDH),其中Au单原子位于Al3的顶部,通过扩展的X射线吸收精细结构(EXAFS)和密度泛函理论(DFT)计算揭示了Au-O4配位。结果表明,Au1-MgAl-LDH能够驱动苯与O2在水中的氧化反应,并且对苯酚表现出99%的高选择性。而对比实验显示,对于带有Au纳米颗粒负载的MgAl-LDH(Au-NP-MgAl-LDH)的脂肪酸,选择性约为99%。详细的表征证实,选择性差异的起源可以归因于底物苯与Au单原子和纳米颗粒的深刻吸附行为。对于Au1-MgAl-LDH,在苯活化中形成单个Au-C键并导致苯酚的产生。而对于Au-NP-MgAl-LDH,在苯活化中产生多个Au-C键,导致C→C键的裂纹。
    Direct and selective oxidation of benzene to phenol is a long-term goal in industry. Although great efforts have been made in homogenous catalysis, it still remains a huge challenge to drive this reaction via heterogeneous catalysts under mild conditions. Herein, a single-atom Au loaded MgAl-layered double hydroxide (Au1 -MgAl-LDH) with a well-defined structure, in which the Au single atoms are located on the top of Al3+ with Au-O4 coordination as revealed by extended x-ray-absorption fine-structure (EXAFS)and density-functional theory (DFT)calculation is reported. The photocatalytic results prove the Au1 -MgAl-LDH is capable of driving benzene oxidation reaction with O2 in water, and exhibits a high selectivity of 99% for phenol. While contrast experiment shows a ≈99% selectivity for aliphatic acid with Au nanoparticle loaded MgAl-LDH (Au-NP-MgAl-LDH). Detailed characterizations confirm that the origin of the selectivity difference can be attributed to the profound adsorption behavior of substrate benzene with Au single atoms and nanoparticles. For Au1 -MgAl-LDH, single Au-C bond is formed in benzene activation and result in the production of phenol. While for Au-NP-MgAl-LDH, multiple AuC bonds are generated in benzene activation, leading to the crack of CC bond.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由具有分层互连的富孔网络的胶体纳米颗粒衍生的气凝胶保证了它们在各种应用中的巨大潜力。在这里,通过自下而上的方法,基于Au纳米颗粒(AuNP)和还原氧化石墨烯(rGO)纳米片作为构建块的三维气凝胶的可控组装已经得到了系统的阐明。结构单元及其组装顺序的差异对最终的气凝胶形态和电化学性能至关重要。具体来说,具有互连的rGO纳米片和Au纳米线的高度多孔石墨烯-金双气凝胶(rGO-AuDAG)显示出高导电性,表面积大,生物相容性好。因此,它被用作高效生物电催化固定化酶的优良基质。以胆红素氧化酶为例,对于直接的生物电催化O2还原,与其他rGO-Au组件相比,获得了更大的正导通电位(0.60V)和更大的催化电流密度(0.77mAcm-2@0.40V)。这项研究将为独特的双结构气凝胶设计提供有效的策略,并为开发用于生物传感器和生物燃料电池等生物电催化应用的新型功能材料提供启示。
    Aerogels derived from the colloidal nanoparticles featured with hierarchical interconnected pore-rich networks guarantee their great potentials in various applications. Herein, the controllable assembly of three-dimensional aerogels based on Au nanoparticles (Au NPs) and reduced graphene oxide (rGO) nanosheets as building blocks via a bottom-up approach have been systematically clarified. The difference of building blocks and their assembly sequence were crucially to the final aerogel morphologies and electrochemical properties. Specifically, the highly porous graphene-gold dual aerogels (rGO-Au DAGs) with interconnected rGO nanosheets and Au nanowires showed high conductivity, large surface area and good biocompatibility. Thus, it was employed as an excellent matrix to immobilize enzyme for high-efficient bioelectrocatalysis. Taking bilirubin oxidase as an example, a more positive on-set potential (0.60 V) and a larger catalytic current density (0.77 mA cm-2@0.40 V) than those of other rGO-Au assemblies were achieved for direct bioelectrocatalytic O2 reduction. This study will provide an efficient strategy for unique dual-structural aerogels design and shed light to develop new functional materials for bioelectrocatalytic applications such as biosensors and biofuel cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电催化氮还原反应(eNRR)为氨(NH3),碳中性,和氨生产的巨大潜力战略。然而,由于该过程中缓慢的转移动力学以及缺乏有效的N2吸附和活化位点,eNRR的转化效率和选择性仍然面临重大挑战。在这里,我们设计并制造了富含缺陷的TiO2纳米片,该纳米片具有氧空位(OVs)和Au纳米颗粒(Au/TiO2-x)作为电催化剂,可有效固定N2。实验结果表明OVs作为活性位点,这使得N2分子能够有效的化学吸附和活化。负载在富OVsTiO2纳米片上的Au纳米颗粒不仅加速了电荷转移,而且改变了局部电子结构,从而增强N2的吸附和活化。在这项工作中,最佳的Au/TiO2-x电催化剂显示出相当大的NH3产率活性,为12.5μgh-1mgcat。-1,在-0.40V时相对于可逆氢电极(RHE)的法拉第效率(FE)为10.2%。更重要的是,Au/TiO2-x在循环中表现出稳定的N2固定活性,甚至在连续电解80小时后仍持续存在。密度泛函理论(DFT)计算表明,OVs作为TiO2中的活性位点,而Au纳米颗粒对于改善N2化学吸附和通过远端氢化途径促进eNRR的电荷转移来降低反应能垒至关重要。这项研究提供了合理的催化位点设计,用于调节金属负载缺陷催化剂上活性位点的电荷转移,以促进N2电还原为NH3。
    The electrocatalytic nitrogen reduction reaction (eNRR) to ammonia (NH3) has been recognized as an effective, carbon-neutral, and great-potential strategy for ammonia production. However, the conversion efficiency and selectivity of eNRR still face significant challenges due to the slow transfer kinetics and lack of effective N2 adsorption and activation sites in this process. Herein, we designed and fabricated defect-rich TiO2 nanosheets furnished with oxygen vacancies (OVs) and Au nanoparticles (Au/TiO2-x) as the electrocatalyst for efficient N2-fixing. The experimental results demonstrate that OVs act as active sites, which enable efficient chemisorption and activation of N2 molecules. The Au nanoparticles loaded on the OVs-rich TiO2 nanosheets not only accelerate charge transfer but also change the local electronic structure, thus enhancing N2 adsorption and activation. In this work, the optimal Au/TiO2-x electrocatalyst displays a considerable NH3 yield activity of 12.5 μg h-1 mgcat.-1 and a faradaic efficiency (FE) of 10.2 % at -0.40 V vs reversible hydrogen electrode (RHE). More importantly, the Au/TiO2-x exhibits a stable N2-fixing activity in cycling and it persists even after 80 h of consecutive electrolysis. Density functional theory (DFT) calculations reveal that the OVs serve as the active sites in TiO2, while Au nanoparticles are crucial for improving N2 chemisorption and lowering the reaction energy barrier by facilitating the charge transfer for eNRR with a distal hydrogenation pathway. This research offers a rational catalytic site design for modulating charge transfer of active sites on metal-supported defective catalysts to boost N2 electroreduction to NH3.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    作为一项新兴技术,纳米催化药物备受关注,特别是根据在肿瘤中使用过量H2O2的酶促反应。在各种候选人中,单原子催化剂(SAC)显示出独特而卓越的氧化还原反应性能,由于由单个金属原子组成的活性位点可以实现金属原子的最大利用率,并且出现明显放大的反应速率。在这里,我们开发了一个M-Nx(M=Mn,通过煅烧Mn2掺杂的沸石咪唑酯骨架(ZIF-8),具有中空结构的Zn)中心基SAC,并应用聚乙二醇化提高亲水性。根据酶促反应,M-Nx(M=Mn,Zn)中心具有固有的过氧化物酶样活性,可在弱酸性肿瘤微环境中催化过表达的H2O2,并产生大量的毒性活性氧(ROS)样羟基自由基用于治疗。为了保持有效的治疗输出,我们将中空SAC与Au整合,Au可以消耗肿瘤中的葡萄糖,并提供H2O2作为过氧化物酶样活性的底物。更好的是,Au可以增强SAC的光热效应,并提供另一种非侵入性光热疗法(PTT)以促进肿瘤去除的效果。该平台为构建更有效的过氧化物酶样活性在肿瘤治疗中的应用提供了新的思路。
    As an emerging technology, nanocatalytic medicine attracts much attention, especially the ones according to the enzymatic reaction by using excess H2O2 in the tumor. Among various candidates, single-atom catalyst (SAC) revealed unique and outstanding redox reaction performance, since the active sites consisting of single metal atoms may achieve the maximum utilization of metal atoms and emerge obviously amplified reaction rate. Here we developed an M-Nx (M = Mn, Zn) center-based SAC with a hollow structure by calcination of Mn2+-doped zeolitic imidazolate frameworks (ZIF-8), and PEGylation was applied to improve the hydrophilicity. According to the enzymatic reaction, the M-Nx (M = Mn, Zn) centers have an inherent peroxidase-like activity to catalyze over-expressed H2O2 in the weak acidic tumor microenvironment and generate a large amount of toxic reactive oxygen species (ROS) like hydroxyl radicals for therapy. To keep efficient therapeutic output, we integrated the hollow SAC with Au which could expend the glucose in tumor and supply H2O2 as the substrate of peroxidase-like activity. Better yet, Au may boost the photothermal effect of SAC and offer another non-invasive photothermal therapy (PTT) to promote the effect of tumor removal. This platform provided a new idea for the construction of more efficient peroxidase-like activity in tumor therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    类似于生物催化和均相催化中的金属中心,单原子催化剂(SAC)中的金属物种是带电的,原子分散和稳定的载体和基质。SAC的反应条件依赖性催化性能早已被认识到,但以前很少调查。我们使用h-BN(AuBN)上的原子分散Au作为模型,并进行了基于第一原理的大量计算,研究了反应条件下SAC上的CO氧化途径。我们证明了反应物的吸附,即CO,O2和CO2,以及它们与反应物种在AuBN上的共吸附将取决于条件,导致具有不同反应性的各种反应物质并影响CO转化。具体来说,修正的Langmuir-Hinshelwood途径在高温下占主导地位,CO介导的O2活化和环状过氧化物中间体的解离,然后是Eley-Rideal型还原,而在低温和高CO分压下,共吸附的CO介导的过氧化物中间体解离变得合理。碳酸盐物种也将在CO2的存在下形成,与共吸附的CO反应并有利于转化。研究结果强调了在详细条件下SAC的条件依赖性CO氧化性能的起源,并可能有助于合理化当前对SAC优异催化性能的理解。
    Similar to the metal centers in biocatalysis and homogeneous catalysis, the metal species in single atom catalysts (SACs) are charged, atomically dispersed and stabilized by support and substrate. The reaction condition dependent catalytic performance of SACs has long been realized, but seldom investigated before. We investigated CO oxidation pathways over SACs in reaction conditions using atomically dispersed Au on h-BN (AuBN) as a model with extensive first-principles-based calculations. We demonstrated that the adsorption of reactants, namely CO, O2 and CO2, and their coadsorption with reaction species on AuBN would be condition dependent, leading to various reaction species with different reactivity and impact the CO conversion. Specifically, the revised Langmuir-Hinshelwood pathway with the CO-mediated activation of O2 and dissociation of cyclic peroxide intermediate followed by the Eley-Rideal type reduction is dominant at high temperatures, while the coadsorbed CO-mediated dissociation of peroxide intermediate becomes plausible at low temperatures and high CO partial pressures. Carbonate species would also form in existence of CO2, react with coadsorbed CO and benefit the conversion. The findings highlight the origin of the condition-dependent CO oxidation performance of SACs in detailed conditions and may help to rationalize the current understanding of the superior catalytic performance of SACs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    二氧化碳(CO2)光催化还原成化石燃料已引起广泛关注。然而,获得高附加值的碳氢化合物,尤其是C2+产品,仍然是一个相当大的挑战。在这里,设计并测试了金(Au)纳米颗粒修饰的富铋氧溴化铋Bi12O17Br2纳米管复合材料。Au纳米颗粒充当电子陷阱和热电子施主,其促进载流子的有效分离和迁移以形成C2+产物。因此,与纯Bi12O17Br2纳米管相比,Au@Bi12O17Br2复合材料不仅能产生一氧化碳(CO)和甲烷(CH4),但也将二氧化碳转化为乙烷(C2H6)。在这项研究中,使用Au@Bi12O17Br2-700获得29.26μmol·h-1g-1的C2H6生产速率。在5小时测试期间,对于烃的选择性达到94.86%,对于C2H6的选择性达到90.81%。所提出的方法可用于设计高性能光催化剂,以将CO2转化为高附加值的碳氢化合物产品。
    The photocatalytic reduction of carbon dioxide (CO2) to fossil fuels has attracted widespread attention. However, obtaining the high value-added hydrocarbons, especially C2+ products, remains a considerable challenge. Herein, gold (Au) nanoparticle-modified bismuth-rich bismuth oxybromide Bi12O17Br2 nanotube composites were designed and tested. Au nanoparticles act as electron traps and thermal electron donors that promote the efficient separation and migration of carriers to form the C2+ product. As a result, compared with the pure Bi12O17Br2 nanotubes, Au@Bi12O17Br2 composites can not only produce the carbon monoxide (CO) and methane (CH4), but also covert CO2 into ethane (C2H6). In this study, Au@Bi12O17Br2-700 was used to obtain a C2H6 production rate of 29.26 μmol h-1 g-1. The selectivities during a 5-hour test reached 94.86% for hydrocarbons and 90.81% for C2H6. The proposed approach could be used to design high-performance photocatalysts to convert CO2 into high value-added hydrocarbon products.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号