software

软件
  • 文章类型: Journal Article
    跟上前列腺癌的最新临床进展可能是具有挑战性的。我们调查了指南使用对治疗决策质量的影响,以及新的,CE认证的临床决策支持工具(SiemensAIPC软件),用于了解临床医生在多中心环境中决策所花费的时间。10位泌尿科医师在3种情况下评估了10例临床病例(筛查和局限性前列腺癌):无支持,使用EAU指南的数字版本,使用AIPC工具,导致300个临床决策。比较涉及花费的时间,决策的正确性和完整性。与数字指南相比,使用AIPC可以显着减少每个案例的时间支出(3.57分钟和0:14分钟,p<0.01)和每位泌尿科医生的总时间(39.45分钟和02:20分钟,p<0.01)。没有指导方针支持的决策选择,在线指南使用和AIPC的使用完成了61%,80%和100%,分别(p<0.01)。没有指导方针支持的决策,AIPC的在线指南用法和用法是正确的,包括28%的所有选项,66%和100%,分别(p<0.01)。临床决策支持系统有可能减少决策时间并提高决策质量。
    Keeping up to date with the latest clinical advances in prostate cancer can be challenging. We investigated the impact of guideline use on quality of treatment decisions as well as the impact of a novel, CE-certified clinical decision support tool (Siemens AIPC software) on the amount of time clinicians spend on decision-making in a multicenter setting. Ten urologists assessed ten clinical cases (screening and localized prostate cancer) in three settings: without support, using a digital version of the EAU guidelines, and with the AIPC tool, resulting in 300 clinical decisions. Comparison involved time spent, decision correct- and completeness. Using AIPC compared to digital guidelines led to a significant reduction of expenditure of time at a per case level (3.57 min and 0:14 min, p < 0.01) and for overall time per urologist (39.45 min and 02:20 min, p < 0.01). Decision options without guidelines support, online guideline usage and usage of AIPC were complete in 61%, 80% and 100%, respectively (p < 0.01). Decision making without guidelines support, online guideline usage and usage of AIPC was correct including all options in 28%, 66% and 100%, respectively (p < 0.01).Clinical decision support systems have the potential to reduces decision-making time and to enhance decision quality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本手稿描述了一个资源模块的开发,该模块是名为“NIGMSSandboxforCloud-basedLearning”(https://github.com/NIGMS/NIGMS-Sandbox)的学习平台的一部分。该模块以交互式格式提供有关基于云的共识路径分析的学习材料,该格式使用适当的云资源进行数据访问和分析。路径分析很重要,因为它使我们能够深入了解潜在条件的生物学机制。但是许多途径分析方法的可用性,编码技能的要求,目前的工具只关注少数物种,这使得生物医学研究人员很难有效地进行自我学习和路径分析。此外,缺乏工具,使研究人员能够比较从不同实验和不同分析方法获得的分析结果,以找到一致的结果。为了应对这些挑战,我们设计了一个基于云的,自我学习模块,在已建立的、最先进的Pathway分析技术,为学生和研究人员提供必要的培训和示例材料。训练模块由五个Jupyter笔记本组成,为以下任务提供完整的教程:(i)处理表达式数据,(ii)进行差异分析,可视化和比较从四种差异分析方法获得的结果(limma,t检验,edgeR,DESeq2),(iii)处理三个途径数据库(GO,KEGG和Reactome),(Iv)使用八种方法(ORA,相机,KS测试,Wilcoxon试验,FGSEA,GSA,SAFE和PADOG)和(V)结合了多项分析的结果。我们还提供了一些例子,源代码,为学员提供解释和教学视频,以完成每个JupyterNotebook。该模块支持对许多模型的分析(例如,鼠标,果蝇,斑马鱼)和非模型物种。该模块可在https://github.com/NIGMS/Consensus-Pathway-Analysis-in-the-cloud上公开获得。本手稿描述了资源模块的开发,该模块是名为“NIGMSSandboxforCloud-basedLearning\'\'https://github.com/NIGMS/NIGMS-Sandbox”的学习平台的一部分。沙箱的整体起源在本补编开头的社论NIGMS沙箱[1]中进行了描述。该模块以交互式格式提供有关批量和单细胞ATAC-seq数据分析的学习材料,该格式使用适当的云资源进行数据访问和分析。
    This manuscript describes the development of a resource module that is part of a learning platform named \'NIGMS Sandbox for Cloud-based Learning\' (https://github.com/NIGMS/NIGMS-Sandbox). The module delivers learning materials on Cloud-based Consensus Pathway Analysis in an interactive format that uses appropriate cloud resources for data access and analyses. Pathway analysis is important because it allows us to gain insights into biological mechanisms underlying conditions. But the availability of many pathway analysis methods, the requirement of coding skills, and the focus of current tools on only a few species all make it very difficult for biomedical researchers to self-learn and perform pathway analysis efficiently. Furthermore, there is a lack of tools that allow researchers to compare analysis results obtained from different experiments and different analysis methods to find consensus results. To address these challenges, we have designed a cloud-based, self-learning module that provides consensus results among established, state-of-the-art pathway analysis techniques to provide students and researchers with necessary training and example materials. The training module consists of five Jupyter Notebooks that provide complete tutorials for the following tasks: (i) process expression data, (ii) perform differential analysis, visualize and compare the results obtained from four differential analysis methods (limma, t-test, edgeR, DESeq2), (iii) process three pathway databases (GO, KEGG and Reactome), (iv) perform pathway analysis using eight methods (ORA, CAMERA, KS test, Wilcoxon test, FGSEA, GSA, SAFE and PADOG) and (v) combine results of multiple analyses. We also provide examples, source code, explanations and instructional videos for trainees to complete each Jupyter Notebook. The module supports the analysis for many model (e.g. human, mouse, fruit fly, zebra fish) and non-model species. The module is publicly available at https://github.com/NIGMS/Consensus-Pathway-Analysis-in-the-Cloud. This manuscript describes the development of a resource module that is part of a learning platform named ``NIGMS Sandbox for Cloud-based Learning\'\' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox [1] at the beginning of this Supplement. This module delivers learning materials on the analysis of bulk and single-cell ATAC-seq data in an interactive format that uses appropriate cloud resources for data access and analyses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:基因调控网络(GRN)推断是生物学和医学中的一项基本任务,因为它可以更深入地了解生物中基因表达的复杂机制。该生物信息学问题已通过多种计算方法在文献中得到解决。为从表达数据推断而开发的技术采用了贝叶斯网络,常微分方程(ODE),机器学习,信息论测度和神经网络,在其他人中。实现方式的多样性及其各自的定制化,导致了许多工具的出现以及由此衍生的多个专门领域,被理解为具有特定特征的网络子集,这些特征在先验检测方面具有挑战性。在为特定数据集选择最合适的技术时,这种专业化引入了显着的不确定性。这个提议,名为MO-GENECI,建立在先前提议GENECI的基本思想之上,并优化了不同推理技术之间的共识,通过以各种目标函数为指导的精心完善的多目标进化算法,与手头的生物环境有关。
    方法:MO-GENECI已在广泛而多样的学术基准上进行了测试,该基准包括来自多个来源和规模的106个基因调控网络。MO-GENECI的评估将其性能与使用关键指标(AUROC和AUPR)进行基因调控网络推断的单个技术进行了比较。弗里德曼的统计排名提供了有序的分类,然后进行非参数Holm检验以确定统计学意义。
    结果:MO-GENECI\的Pareto前沿近似有助于根据通用输入数据特征轻松选择合适的解决方案。在所有统计测试中,最佳解决方案始终是赢家,在很多情况下,中位数精度解决方案与获胜者相比无统计学差异.
    结论:MO-GENECI不仅证明了比单个技术获得更准确的结果,但由于其灵活性和适应性,也克服了与初始选择相关的不确定性。显示了为每种情况智能地选择最合适的技术。源代码托管在GitHub的公共存储库中,并获得MIT许可:https://github.com/AdrianSeguraOrtiz/MO-GENECI。此外,为了方便其安装和使用,与此实现相关的软件已封装在PyPI:https://pypi.org/project/geneci/上的Python包中。
    OBJECTIVE: Gene Regulatory Network (GRN) inference is a fundamental task in biology and medicine, as it enables a deeper understanding of the intricate mechanisms of gene expression present in organisms. This bioinformatics problem has been addressed in the literature through multiple computational approaches. Techniques developed for inferring from expression data have employed Bayesian networks, ordinary differential equations (ODEs), machine learning, information theory measures and neural networks, among others. The diversity of implementations and their respective customization have led to the emergence of many tools and multiple specialized domains derived from them, understood as subsets of networks with specific characteristics that are challenging to detect a priori. This specialization has introduced significant uncertainty when choosing the most appropriate technique for a particular dataset. This proposal, named MO-GENECI, builds upon the basic idea of the previous proposal GENECI and optimizes consensus among different inference techniques, through a carefully refined multi-objective evolutionary algorithm guided by various objective functions, linked to the biological context at hand.
    METHODS: MO-GENECI has been tested on an extensive and diverse academic benchmark of 106 gene regulatory networks from multiple sources and sizes. The evaluation of MO-GENECI compared its performance to individual techniques using key metrics (AUROC and AUPR) for gene regulatory network inference. Friedman\'s statistical ranking provided an ordered classification, followed by non-parametric Holm tests to determine statistical significance.
    RESULTS: MO-GENECI\'s Pareto front approximation facilitates easy selection of an appropriate solution based on generic input data characteristics. The best solution consistently emerged as the winner in all statistical tests, and in many cases, the median precision solution showed no statistically significant difference compared to the winner.
    CONCLUSIONS: MO-GENECI has not only demonstrated achieving more accurate results than individual techniques, but has also overcome the uncertainty associated with the initial choice due to its flexibility and adaptability. It is shown intelligently to select the most suitable techniques for each case. The source code is hosted in a public repository at GitHub under MIT license: https://github.com/AdrianSeguraOrtiz/MO-GENECI. Moreover, to facilitate its installation and use, the software associated with this implementation has been encapsulated in a Python package available at PyPI: https://pypi.org/project/geneci/.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:医学领域的指南依从性还有改进的空间。数字化决策支持有助于提高合规性。然而,指南的复杂性使得在临床实践中的实施变得困难.
    方法:这项单中心前瞻性研究包括204名在德国大学医院接受择期非心脏手术的成年ASA3-4名患者。研究了指南专家和数字指南支持工具之间的手术许可协议。对值班麻醉师的决定(标准方法)进行了评估,以与交叉设计的专家达成一致。主要结果是数字指南支持与专家之间的协议水平。
    结果:数字指南支持方法清除了18.1%的患者进行手术,标准方法清除了74.0%,专家方法清除了47.5%。专家决策与数字指南支持(66.7%)和标准方法(67.6%)的一致性是公平的(科恩的kappa0.37[四分位数范围0.26-0.48]vs0.31[0.21-0.42],P=0.6)。以专家决策为基准,使用数字指南支持的正确间隙为50.5%,使用标准方法的正确间隙为44.6%。数字指南支持错误地要求31.4%的患者进行额外检查,而标准方法没有考虑到29.4%的患者在手术前需要额外检查的情况.
    结论:通过数字化决策支持对手术间隙的严格指南依从性未充分考虑患者,临床背景。Vagueformulations,薄弱的建议,和低质量的证据复杂的指南翻译为明确的规则。
    背景:NCT04058769。
    BACKGROUND: Guideline adherence in the medical field leaves room for improvement. Digitalised decision support helps improve compliance. However, the complex nature of the guidelines makes implementation in clinical practice difficult.
    METHODS: This single-centre prospective study included 204 adult ASA physical status 3-4 patients undergoing elective noncardiac surgery at a German university hospital. Agreement of clearance for surgery between a guideline expert and a digital guideline support tool was investigated. The decision made by the on-duty anaesthetists (standard approach) was assessed for agreement with the expert in a cross-over design. The main outcome was the level of agreement between digital guideline support and the expert.
    RESULTS: The digital guideline support approach cleared 18.1% of the patients for surgery, the standard approach cleared 74.0%, and the expert approach cleared 47.5%. Agreement of the expert decision with digital guideline support (66.7%) and the standard approach (67.6%) was fair (Cohen\'s kappa 0.37 [interquartile range 0.26-0.48] vs 0.31 [0.21-0.42], P=0.6). Taking the expert decision as a benchmark, correct clearance using digital guideline support was 50.5%, and correct clearance using the standard approach was 44.6%. Digital guideline support incorrectly asked for additional examinations in 31.4% of the patients, whereas the standard approach did not consider conditions that would have justified additional examinations before surgery in 29.4%.
    CONCLUSIONS: Strict guideline adherence for clearance for surgery through digitalised decision support inadequately considered patients, clinical context. Vague formulations, weak recommendations, and low-quality evidence complicate guideline translation into explicit rules.
    BACKGROUND: NCT04058769.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:单细胞RNA测序(scRNA-seq)和空间分辨转录组学(SRT)导致了生命科学领域的突破性进展。为scRNA-seq和SRT数据开发生物信息学工具并执行无偏基准测试,通过提供明确的地面实况和生成定制的数据集,数据模拟已被广泛采用。然而,仿真方法在多种场景下的性能尚未得到全面评估,这使得在没有实际指导的情况下选择合适的方法变得具有挑战性。
    结果:我们在准确性方面系统地评估了为scRNA-seq和/或SRT数据开发的49种模拟方法,功能,可扩展性,和可用性使用来自24个平台的152个参考数据集。SRTsim,scDesign3,ZINB-WAVE,和scDesign2在各种平台上具有最佳的精度性能。出乎意料的是,一些针对scRNA-seq数据定制的方法对于模拟SRT数据具有潜在的兼容性。伦,斯帕西姆,和scDesign3-tree在相应的仿真场景下优于其他方法。Phenopath,伦,简单,和MFA产生高可扩展性得分,但它们不能生成真实的模拟数据。用户在做出决策时应考虑方法准确性和可伸缩性(或功能)之间的权衡。此外,执行错误主要是由于失败的参数估计和在计算中出现缺失或无限值引起的。我们提供了方法选择的实用指南,标准管道Simpipe(https://github.com/duohongrui/simpipe;https://doi.org/10.5281/zenodo.11178409),和在线工具Simsite(https://www.ciblab.net/软件/simshiny/)用于数据模拟。
    结论:没有一种方法在所有标准下都表现最好,因此,如果有效和合理地解决问题,建议使用一种好的但不是最好的方法。我们的全面工作为开发人员提供了有关基因表达数据建模的重要见解,并为用户提供了模拟过程。
    Single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) have led to groundbreaking advancements in life sciences. To develop bioinformatics tools for scRNA-seq and SRT data and perform unbiased benchmarks, data simulation has been widely adopted by providing explicit ground truth and generating customized datasets. However, the performance of simulation methods under multiple scenarios has not been comprehensively assessed, making it challenging to choose suitable methods without practical guidelines.
    We systematically evaluated 49 simulation methods developed for scRNA-seq and/or SRT data in terms of accuracy, functionality, scalability, and usability using 152 reference datasets derived from 24 platforms. SRTsim, scDesign3, ZINB-WaVE, and scDesign2 have the best accuracy performance across various platforms. Unexpectedly, some methods tailored to scRNA-seq data have potential compatibility for simulating SRT data. Lun, SPARSim, and scDesign3-tree outperform other methods under corresponding simulation scenarios. Phenopath, Lun, Simple, and MFA yield high scalability scores but they cannot generate realistic simulated data. Users should consider the trade-offs between method accuracy and scalability (or functionality) when making decisions. Additionally, execution errors are mainly caused by failed parameter estimations and appearance of missing or infinite values in calculations. We provide practical guidelines for method selection, a standard pipeline Simpipe ( https://github.com/duohongrui/simpipe ; https://doi.org/10.5281/zenodo.11178409 ), and an online tool Simsite ( https://www.ciblab.net/software/simshiny/ ) for data simulation.
    No method performs best on all criteria, thus a good-yet-not-the-best method is recommended if it solves problems effectively and reasonably. Our comprehensive work provides crucial insights for developers on modeling gene expression data and fosters the simulation process for users.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    增强适应性免疫受体库测序(AIRR-seq)数据分析的可重复性和可理解性对于科学进步至关重要。本研究提供了可重现的AIRR-seq数据分析指南,以及带有全面文档的现成管道集合。为此,使用ViaFoundry实现了十个常见的管道,管道管理和自动化的用户友好的界面。这伴随着版本化的容器,文档和归档功能。强调了预处理分析步骤的自动化以及根据特定研究需求修改管道参数的能力。AIRR-seq数据分析对不同的参数和设置高度敏感;使用此处提供的指南,证明了重现以前发表的结果的能力。这项工作促进了透明度,再现性,以及在AIRR-SEQ数据分析方面的合作,作为处理和记录其他研究领域生物信息学管道的模型。
    Enhancing the reproducibility and comprehension of adaptive immune receptor repertoire sequencing (AIRR-seq) data analysis is critical for scientific progress. This study presents guidelines for reproducible AIRR-seq data analysis, and a collection of ready-to-use pipelines with comprehensive documentation. To this end, ten common pipelines were implemented using ViaFoundry, a user-friendly interface for pipeline management and automation. This is accompanied by versioned containers, documentation and archiving capabilities. The automation of pre-processing analysis steps and the ability to modify pipeline parameters according to specific research needs are emphasized. AIRR-seq data analysis is highly sensitive to varying parameters and setups; using the guidelines presented here, the ability to reproduce previously published results is demonstrated. This work promotes transparency, reproducibility, and collaboration in AIRR-seq data analysis, serving as a model for handling and documenting bioinformatics pipelines in other research domains.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本文扩展了FAIR(Findable,可访问,互操作,可重用)准则,提供评估软件是否符合开源最佳实践的标准。通过添加\"USE\"(以用户为中心,可持续发展,Equitable),软件开发可以通过早期结合用户输入来坚持开源最佳实践,确保所有可能的利益相关者都可以访问前端设计,与软件设计一起规划长期可持续性。FAIR-USE4OS指南将允许资助者和研究人员更有效地评估和规划开源软件项目。有很好的证据表明,资助者越来越多地要求所有资助的研究软件都是开源的;然而,即使在公平准则下,这可能仅仅意味着在公共存储库中发布具有ZenodoDOI的软件。通过创建FAIR-USE软件,从设计过程的一开始就可以证明最佳实践,并且软件通过具有影响力而具有最大的成功机会。
    This paper extends the FAIR (Findable, Accessible, Interoperable, Reusable) guidelines to provide criteria for assessing if software conforms to best practices in open source. By adding \"USE\" (User-Centered, Sustainable, Equitable), software development can adhere to open source best practice by incorporating user-input early on, ensuring front-end designs are accessible to all possible stakeholders, and planning long-term sustainability alongside software design. The FAIR-USE4OS guidelines will allow funders and researchers to more effectively evaluate and plan open-source software projects. There is good evidence of funders increasingly mandating that all funded research software is open source; however, even under the FAIR guidelines, this could simply mean software released on public repositories with a Zenodo DOI. By creating FAIR-USE software, best practice can be demonstrated from the very beginning of the design process and the software has the greatest chance of success by being impactful.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    鉴定受影响的途径是重要的,因为它提供了对差异表达基因检测之外的生物学基础条件的见解。由于这种分析的重要性,到目前为止,已经开发了100多种途径分析方法。尽管有许多方法,对于生物医学研究人员来说,学习和正确执行通路分析是一项挑战。首先,方法的绝对数量使学习和选择正确的方法为给定的实验具有挑战性。第二,计算方法要求用户精通编码语法,和舒适的命令行环境,大多数生命科学家不熟悉的领域。第三,因为学习工具和计算方法通常只针对少数物种(即,人类和一些模式生物),很难对许多当前途径分析工具中没有包括的其他物种进行途径分析。最后,现有的路径工具不允许研究人员结合,比较,并对比不同方法和实验的结果,以进行假设检验和分析。为了应对这些挑战,我们开发了一个用于共识路径分析(RCPA)的开源R包,使研究人员可以方便地:(1)从NCBIGEO下载和处理数据;(2)使用针对微阵列和测序数据开发的既定技术进行差异分析;(3)进行两种基因集富集,以及使用不同方法的基于拓扑的路径分析,寻求回答不同的研究假设;(4)结合方法和数据集以找到一致的结果;和(5)可视化分析结果,并在多个分析中探索显著影响的路径.该协议提供了许多示例代码片段,其中包含详细的解释,并支持对1000多个物种的分析,两个途径数据库,三种差异分析技术,八种途径分析工具,六种荟萃分析方法,和两种共识分析技术。该软件包可在CRAN存储库中免费获得。©2024作者WileyPeriodicalsLLC出版的当前协议。基本方案1:处理Affymetrix微阵列基本方案2:处理Agilent微阵列支持方案:处理RNA测序(RNA-Seq)数据基本方案3:微阵列数据的差异分析(Affymetrix和Agilent)基本方案4:RNA-Seq数据的差异分析基本方案5:基因集富集分析基本方案6:基于拓扑(TB)的途径分析基本方案7:数据整合和可视化。
    Identifying impacted pathways is important because it provides insights into the biology underlying conditions beyond the detection of differentially expressed genes. Because of the importance of such analysis, more than 100 pathway analysis methods have been developed thus far. Despite the availability of many methods, it is challenging for biomedical researchers to learn and properly perform pathway analysis. First, the sheer number of methods makes it challenging to learn and choose the correct method for a given experiment. Second, computational methods require users to be savvy with coding syntax, and comfortable with command-line environments, areas that are unfamiliar to most life scientists. Third, as learning tools and computational methods are typically implemented only for a few species (i.e., human and some model organisms), it is difficult to perform pathway analysis on other species that are not included in many of the current pathway analysis tools. Finally, existing pathway tools do not allow researchers to combine, compare, and contrast the results of different methods and experiments for both hypothesis testing and analysis purposes. To address these challenges, we developed an open-source R package for Consensus Pathway Analysis (RCPA) that allows researchers to conveniently: (1) download and process data from NCBI GEO; (2) perform differential analysis using established techniques developed for both microarray and sequencing data; (3) perform both gene set enrichment, as well as topology-based pathway analysis using different methods that seek to answer different research hypotheses; (4) combine methods and datasets to find consensus results; and (5) visualize analysis results and explore significantly impacted pathways across multiple analyses. This protocol provides many example code snippets with detailed explanations and supports the analysis of more than 1000 species, two pathway databases, three differential analysis techniques, eight pathway analysis tools, six meta-analysis methods, and two consensus analysis techniques. The package is freely available on the CRAN repository. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Processing Affymetrix microarrays Basic Protocol 2: Processing Agilent microarrays Support Protocol: Processing RNA sequencing (RNA-Seq) data Basic Protocol 3: Differential analysis of microarray data (Affymetrix and Agilent) Basic Protocol 4: Differential analysis of RNA-Seq data Basic Protocol 5: Gene set enrichment analysis Basic Protocol 6: Topology-based (TB) pathway analysis Basic Protocol 7: Data integration and visualization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    近年来,基于人工智能的软件作为医疗设备(SaMD)的发展激增,特别是在视觉专业,如皮肤病学。在澳大利亚,治疗用品管理局(TGA)规范基于AI的SaMD,以确保其安全使用。正确标记这些设备对于确保医疗保健专业人员和公众了解如何使用它们并准确解释结果至关重要。然而,缺乏在皮肤病学中标记基于AI的SaMD的指南,这可能导致产品无法提供有关算法开发和性能指标的基本信息。这篇综述研究了视觉医学专业中基于AI的SaMD的现有标签指南,特别关注皮肤病学。识别标签的常见建议,并将其应用于当前可用的皮肤病学基于AI的SaMD移动应用程序,以确定这些标签的使用情况。在确定的21个基于AI的SaMD移动应用程序中,没有一个完全符合通用标签建议。结果强调了标准化标签指南的必要性。确保信息的透明度和可访问性对于将人工智能安全整合到医疗保健中并防止与不准确的临床决策相关的潜在风险至关重要。
    In recent years, there has been a surge in the development of AI-based Software as a Medical Device (SaMD), particularly in visual specialties such as dermatology. In Australia, the Therapeutic Goods Administration (TGA) regulates AI-based SaMD to ensure its safe use. Proper labelling of these devices is crucial to ensure that healthcare professionals and the general public understand how to use them and interpret results accurately. However, guidelines for labelling AI-based SaMD in dermatology are lacking, which may result in products failing to provide essential information about algorithm development and performance metrics. This review examines existing labelling guidelines for AI-based SaMD across visual medical specialties, with a specific focus on dermatology. Common recommendations for labelling are identified and applied to currently available dermatology AI-based SaMD mobile applications to determine usage of these labels. Of the 21 AI-based SaMD mobile applications identified, none fully comply with common labelling recommendations. Results highlight the need for standardized labelling guidelines. Ensuring transparency and accessibility of information is essential for the safe integration of AI into health care and preventing potential risks associated with inaccurate clinical decisions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本章介绍了使用DNA序列数据获取和比较使用公共数据库GenBank和BarcodeofLifeDataSystem(BOLD)进行分类鉴定的程序。本章首先描述了用于准备上传到GenBank和BOLD的质量序列的程序。接下来,使用GenBankBLAST和BOLD识别引擎描述了用于针对公共数据库查询DNA序列的步骤。提出了分类识别分配的解释指南。最后,提供了用于评估来自GenBank和BOLD的序列的准确性和可靠性的程序。
    This chapter describes procedures for the use of DNA sequence data to obtain and compare taxonomic identification using the public databases GenBank and Barcode of Life Data System (BOLD). The chapter begins by describing procedures used to prepare quality sequences for uploading into GenBank and BOLD. Next, steps used to query the DNA sequences against the public databases are described using GenBank BLAST and BOLD identification engines. Interpretation guidelines for the taxonomic identification assignments are presented. Finally, a procedure for evaluating the accuracy and reliability of sequences from GenBank and BOLD is provided.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号