nucleus of the solitary tract

孤束核
  • 文章类型: Journal Article
    经皮耳迷走神经刺激(taVNS)靶向外耳迷走神经耳支的皮下轴突。它的非侵入性使其成为各种疾病的潜在治疗方法。taVNS在孤束核(NTS)内诱导神经调节作用,由于其广泛的连通性,NTS充当在高级脑区和其他脑干核(例如脊髓三叉神经核;Sp5)引起神经调节的门户。我们的目的是检查NTS和Sp5中α-氯醛糖麻醉的Sprague-Dawley大鼠单神经元电生理反应的刺激参数。还将taVNS与传统宫颈VNS(cVNS)在单个神经元激活上进行比较。具体来说,对一系列频率和强度参数(20-250Hz,0.5-1.0mA)。神经元被归类为阳性,基于活动增加的负面或无反应者,刺激期间活动减少或无反应,分别。频率依赖性分析表明,在NTS和Sp5中,20和100Hz产生的阳性反应者比例最高,1.0mA强度引起最大程度的反应。taVNS和cVNS之间的比较揭示了尾端NTS神经元群体相似的参数特异性激活;然而,单个神经元显示不同的激活谱。后者表明cVNS和taVNS通过不同的神经元途径向NTS发送传入输入。这项研究证明了不同的参数特异性taVNS反应,并开始研究负责taVNS调节的机制。了解负责引发神经调节作用的神经元途径将能够在各种临床疾病中进行更量身定制的taVNS治疗。要点:经皮耳迷走神经刺激(taVNS)通过激活耳朵中的迷走神经传入以诱导神经调节,提供了一种非侵入性替代侵入性颈迷走神经刺激(cVNS)。我们的研究评估了taVNS对孤束核(NTS)和三叉神经脊髓核(Sp5)中神经元放电模式的影响,发现20和100Hz在两个核刺激期间显着增加了神经元活性。taVNS强度的增加不仅增加了Sp5中响应的神经元数量,而且增加了响应的幅度,表明与NTS相比,对taVNS的敏感性提高。cVNS和taVNS之间的比较揭示了相似的整体激活,但对单个神经元的反应不同。显示不同的神经通路。这些结果显示了对taVNS的参数特异性和细胞核特异性反应,并证实taVNS可以在神经元水平上引发与cVNS相当的反应,但它是通过不同的神经元途径实现的。
    Transcutaneous auricular vagus nerve stimulation (taVNS) targets subcutaneous axons in the auricular branch of the vagus nerve at the outer ear. Its non-invasive nature makes it a potential treatment for various disorders. taVNS induces neuromodulatory effects within the nucleus of the solitary tract (NTS), and due to its widespread connectivity, the NTS acts as a gateway to elicit neuromodulation in both higher-order brain regions and other brainstem nuclei (e.g. spinal trigeminal nucleus; Sp5). Our objective was to examine stimulation parameters on single-neuron electrophysiological responses in α-chloralose-anaesthetized Sprague-Dawley rats within NTS and Sp5. taVNS was also compared to traditional cervical VNS (cVNS) on single neuronal activation. Specifically, electrophysiological extracellular recordings were evaluated for a range of frequency and intensity parameters (20-250 Hz, 0.5-1.0 mA). Neurons were classified as positive, negative or non-responders based on increased activity, decreased activity or no response during stimulation, respectively. Frequency-dependent analysis showed that 20 and 100 Hz generated the highest proportion of positive responders in NTS and Sp5 with 1.0 mA intensities eliciting the greatest magnitude of response. Comparisons between taVNS and cVNS revealed similar parameter-specific activation for caudal NTS neuronal populations; however, individual neurons showed different activation profiles. The latter suggests that cVNS and taVNS send afferent input to NTS via different neuronal pathways. This study demonstrates differential parameter-specific taVNS responses and begins an investigation of the mechanisms responsible for taVNS modulation. Understanding the neuronal pathways responsible for eliciting neuromodulatory effects will enable more tailored taVNS treatments in various clinical disorders. KEY POINTS: Transcutaneous auricular vagus nerve stimulation (taVNS) offers a non-invasive alternative to invasive cervical vagus nerve stimulation (cVNS) by activating vagal afferents in the ear to induce neuromodulation. Our study evaluated taVNS effects on neuronal firing patterns in the nucleus of the solitary tract (NTS) and spinal trigeminal nucleus (Sp5) and found that 20 and 100 Hz notably increased neuronal activity during stimulation in both nuclei. Increasing taVNS intensity not only increased the number of neurons responding in Sp5 but also increased the magnitude of response, suggesting a heightened sensitivity to taVNS compared to NTS. Comparisons between cVNS and taVNS revealed similar overall activation but different responses on individual neurons, indicating distinct neural pathways. These results show parameter-specific and nuclei-specific responses to taVNS and confirm that taVNS can elicit responses comparable to cVNS at the neuronal level, but it does so through different neuronal pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    表达胰高血糖素基因(Gcg)的孤束尾核(cNTS)和中间网状核(IRt)中的神经元在脊髓和许多皮质下脑区域中产生GLP1免疫阳性轴突。中枢GLP1受体信号传导有助于大鼠和小鼠的动机行为和应激反应,其中后脑GLP1神经元被激活以代谢状态依赖性方式表达cFos。本研究检查了GLP1对不同大脑区域的输入是否来自Gcg表达神经元的不同子集,并绘制了由投影定义的GLP1神经群体产生的轴突侧支的集体分布。使用我们的Gcg-Cre敲入大鼠模型,在成年雄性和雌性大鼠中进行Cre依赖性腺相关病毒(AAV1)追踪,以比较IRt与IRt的轴突投影cNTSGLP1神经元。在接受GLP1输入的所有大脑区域观察到重叠的轴突投影,需要注意的是,cNTS注射会产生一些IRt神经元的Cre依赖性标记,反之亦然。在额外的实验中,对特定的间脑或边缘前脑核进行显微注射Cre依赖性逆行AAV(AAVrg),该AAV表达完全标记转导GLP1神经群轴突侧支的报告基因.将AAVrg注射到cNTS和IRt中的每个前脑位点标记的表达Gcg的神经元中。这些标记的神经元的集体轴突侧支进入脊髓,以前报道的每个大脑区域都含有GLP1阳性轴突。这些结果表明,神经支配丘脑PVT的GLP1神经元群体产生的轴突,下丘脑PVH,和/或边缘前脑BST共同支配所有接受GLP1轴突输入的中央区。意义陈述我们新颖的解剖学发现表明,目标定义的前脑投射GLP1神经元群体以广泛的洒水式方式共同投射到下游目标区域,尽管由单个GLP1投射神经元产生的侧支轴突仍有待定义。与研究中心GLP1受体信号通路在生理和行为中的作用的研究结果一起考虑,这些发现支持了我们的新观点,即后脑Gcg表达神经元被定位为同时调节广泛脊髓中的突触传递,脑干,下丘脑,和边缘前脑回路以代谢状态依赖的方式。
    Neurons in the caudal nucleus of the solitary tract (cNTS) and intermediate reticular nucleus (IRt) that express the glucagon gene (Gcg) give rise to glucagon-like peptide 1 (GLP1)-immunopositive axons in the spinal cord and many subcortical brain regions. Central GLP1 receptor signaling contributes to motivated behavior and stress responses in rats and mice, in which hindbrain GLP1 neurons are activated to express c-Fos in a metabolic state-dependent manner. The present study examined whether GLP1 inputs to distinct brain regions arise from distinct subsets of Gcg-expressing neurons, and mapped the distribution of axon collaterals arising from projection-defined GLP1 neural populations. Using our Gcg-Cre knock-in rat model, Cre-dependent adeno-associated virus (AAV) tracing was conducted in adult male and female rats to compare axonal projections of IRt versus cNTS GLP1 neurons. Overlapping projections were observed in all brain regions that receive GLP1 input, with the caveat that cNTS injections produced Cre-dependent labeling of some IRt neurons, and vice versa. In additional experiments, specific diencephalic or limbic forebrain nuclei were microinjected with Cre-dependent retrograde AAVs (AAVrg) that expressed reporters to fully label the axon collaterals of transduced GLP1 neurons. AAVrg injected into each forebrain site labeled Gcg-expressing neurons in both the cNTS and IRt. The collective axon collaterals of labeled neurons entered the spinal cord and every brain region previously reported to contain GLP1-positive axons. These results indicate that the axons of GLP1 neural populations that innervate the thalamic paraventricular nucleus, paraventricular nucleus of the hypothalamus, and/or bed nucleus of the stria terminalis collectively innervate all central regions that receive GLP1 axonal input.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们先前表明,食欲素神经元被缺氧激活,并促进外周化学反射(PCR)介导的低氧通气反应(HVR),主要是通过促进呼吸频率响应。Orexin神经元投射到孤束核(nTS)和下丘脑室旁核(PVN)。PVN对PCR有重要贡献,并含有nTS-促肾上腺皮质激素释放激素(CRH)神经元。我们假设在雄性大鼠中,食欲素神经元通过激活nTS投射的CRH神经元来促进PCR。我们使用神经元束追踪和免疫组织化学(IHC)来量化缺氧激活PVN投射食欲素神经元的程度。我们将其与食欲素受体(OxR)阻断与suvorexant(Suvo,20mg/kg,i.p.)评估食欲素促进PVN中CRH神经元缺氧诱导激活的程度,包括那些投射到nTS的。在不同的大鼠组中,我们测量了系统性食欲素1受体(Ox1R)阻断(SB-334867;1mg/kg)和PVN中特定Ox1R敲除后的PCR。用Suvo阻断OxR减少了缺氧激活的nTS和PVN神经元的数量,包括那些投射到nTS的CRH神经元。低氧增加了活化的PVN-投射食欲素神经元的数量,但对活化的nTS-投射食欲素神经元的数量没有影响。PVN中的全局Ox1R阻断和部分Ox1R敲除显著降低了PCR。Ox1R敲除还减少了nTS中活化的PVN神经元的数量和活化的酪氨酸-羟化酶神经元的数量。我们的发现表明,食欲素通过表达Ox1R的nTS投射CRH神经元促进PCR。重要性陈述先前我们表明食欲素有助于外周化学反射(PCR),但是这种效应的潜在机制仍然未知。在这里,我们表明:1)食欲素受体阻断减少了PVN和nTS的激活;2)缺氧激活了投射到PVN的食欲素神经元,但不是那些投射到nTS的;3)食欲素受体阻断减少了PVN中nTS-投射促肾上腺皮质激素释放激素(CRH)神经元的激活;4)食欲素1受体(Ox1R)阻断和PVN中特定的Ox1R敲低降低了PCR的强度,和5)Ox1R敲除减少nTS中活化的PVN神经元和酪氨酸羟化酶神经元的数量。这些发现表明,PVN-投射食欲素神经元通过Ox1R促进了nTS-投射CRH神经元上的PCR。
    We previously showed that orexin neurons are activated by hypoxia and facilitate the peripheral chemoreflex (PCR)-mediated hypoxic ventilatory response (HVR), mostly by promoting the respiratory frequency response. Orexin neurons project to the nucleus of the solitary tract (nTS) and the paraventricular nucleus of the hypothalamus (PVN). The PVN contributes significantly to the PCR and contains nTS-projecting corticotropin-releasing hormone (CRH) neurons. We hypothesized that in male rats, orexin neurons contribute to the PCR by activating nTS-projecting CRH neurons. We used neuronal tract tracing and immunohistochemistry (IHC) to quantify the degree that hypoxia activates PVN-projecting orexin neurons. We coupled this with orexin receptor (OxR) blockade with suvorexant (Suvo, 20 mg/kg, i.p.) to assess the degree that orexin facilitates the hypoxia-induced activation of CRH neurons in the PVN, including those projecting to the nTS. In separate groups of rats, we measured the PCR following systemic orexin 1 receptor (Ox1R) blockade (SB-334867; 1 mg/kg) and specific Ox1R knockdown in PVN. OxR blockade with Suvo reduced the number of nTS and PVN neurons activated by hypoxia, including those CRH neurons projecting to nTS. Hypoxia increased the number of activated PVN-projecting orexin neurons but had no effect on the number of activated nTS-projecting orexin neurons. Global Ox1R blockade and partial Ox1R knockdown in the PVN significantly reduced the PCR. Ox1R knockdown also reduced the number of activated PVN neurons and the number of activated tyrosine hydroxylase neurons in the nTS. Our findings suggest orexin facilitates the PCR via nTS-projecting CRH neurons expressing Ox1R.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肥胖流行主要是由消耗超过身体所需的卡路里驱动的。因此,至关重要的是确定支撑摄食行为的机制。脑干背侧迷走神经复合体(DVC)内的神经元从消化系统接收直接信息,并投射到大脑中的二级区域以调节食物摄入。尽管γ-氨基丁酸在DVC(GABADVC)中表达,它在这个地区的功能尚未定义。为了发现GABADVC细胞独特的基因表达特征,我们使用单核RNA测序(Nuc-seq),这揭示了19个独立的集群。接下来,我们研究了GABADVC细胞的功能,发现GABADVC神经元的选择性激活显着控制食物摄入和体重。GABADVC电路的光遗传学询问将GABADVC→下丘脑弓状核(ARC)投射视为食欲抑制而不会产生厌恶。电生理分析表明,GABADVC→ARC刺激通过GABA释放抑制饥饿促进神经肽Y(NPY)神经元。采用交叉遗传学策略,我们澄清了GABADVC→ARC电路抑制了食物摄入。这些数据表明GABADVC是摄食行为和体重的新调节剂,也是食欲性NPY神经元活动的控制器,从而深入了解肥胖的神经基础。
    The obesity epidemic is principally driven by the consumption of more calories than the body requires. It is therefore essential that the mechanisms underpinning feeding behavior are defined. Neurons within the brainstem dorsal vagal complex (DVC) receive direct information from the digestive system and project to second-order regions in the brain to regulate food intake. Although γ-aminobutyric acid is expressed in the DVC (GABADVC), its function in this region has not been defined. In order to discover the unique gene expression signature of GABADVC cells, we used single-nucleus RNA sequencing (Nuc-seq), and this revealed 19 separate clusters. We next probed the function of GABADVC cells and discovered that the selective activation of GABADVC neurons significantly controls food intake and body weight. Optogenetic interrogation of GABADVC circuitry identified GABADVC → hypothalamic arcuate nucleus (ARC) projections as appetite suppressive without creating aversion. Electrophysiological analysis revealed that GABADVC → ARC stimulation inhibits hunger-promoting neuropeptide Y (NPY) neurons via GABA release. Adopting an intersectional genetics strategy, we clarify that the GABADVC → ARC circuit curbs food intake. These data identify GABADVC as a new modulator of feeding behavior and body weight and a controller of orexigenic NPY neuron activity, thereby providing insight into the neural underpinnings of obesity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    咽部电刺激(PES)对咽粘膜(PhM)施加电刺激,是改善吞咽困难患者吞咽功能的有用方法。为了确定治疗吞咽困难的最佳PES模式,必须阐明PES对吞咽功能影响的潜在机制。在这项研究中,我们评估了PES和电刺激喉上神经(SLN)如何调节麻醉大鼠吞咽的启动.PhM的电刺激诱发了吞咽,SLN,以及使用vonFrey细丝的孤束核(nTS)和咽部机械刺激。通过舌骨和甲状舌骨肌肉的肌电图爆发确定了吞咽。双侧SLN横切消除了PhM电刺激诱发的吞咽。PhM和SLN电刺激以类似的时间依赖性方式降低吞咽频率。在SLN电刺激过程中,静脉给予GABAA受体拮抗剂bicuculine不会影响吞咽频率的时间依赖性变化。与刺激前后相比,持续的SLN电刺激显着抑制了咽部机械和nTS电诱发的吞咽。目前的发现表明,SLN在PES诱发的吞咽中起主要作用。此外,持续的SLN电刺激抑制了吞咽的开始,与吞咽相关的中央网络的调节可能部分参与了这种抑制。
    Pharyngeal electrical stimulation (PES) applies electrical stimulation to pharyngeal mucosa (PhM) and represents a useful approach to improve swallowing function in patients with dysphagia. To determine the optimal PES modality to treat dysphagia, the mechanism underlying the effects of PES on swallowing function must be elucidated. In this study, we evaluated how PES and electrical stimulation of the superior laryngeal nerve (SLN) modulate the initiation of swallowing in anesthetized rats. A swallow was evoked by electrical stimulation of the PhM, SLN, and nucleus of the solitary tract (nTS) and pharyngeal mechanical stimulation using a von Frey filament. A swallow was identified by electromyographic bursts in mylohyoid and thyrohyoid muscles. Bilateral SLN transection abolished the swallows evoked by PhM electrical stimulation. PhM and SLN electrical stimulation decreased swallowing frequency in a similar time-dependent manner. Intravenous administration of the GABAA receptor antagonist bicuculine did not affect the time-dependent change in swallowing frequency during SLN electrical stimulation. Continuous SLN electrical stimulation significantly inhibited pharyngeal mechanically and nTS-electrically evoked swallows compared with before and 5 min after stimulation. The present findings suggest that the SLN plays a primary role in PES-evoked swallows. Additionally, continuous SLN electrical stimulation inhibits the initiation of swallowing, and the modulation of central network associated with swallowing might be partially involved in this inhibition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    化疗的失败,唤醒,和/或窒息自动复苏可能是一些婴儿猝死综合征(SIDS)病例的基础。在第一部分,我们发现一些SIDS婴儿在支持化疗的髓核中改变了5-羟色胺(5-HT)2A/C受体结合,唤醒,和自动复苏。这里,使用相同的数据集,我们测试了低5-HT1A和/或5-HT2A/C受体结合的患病率的假设(定义为低于对照的95%置信区间的水平-一种新方法),SIDS中受影响的细胞核百分比高于对照组,低结合的分布随死亡年龄而变化。SIDS中具有低5-HT1A和5-HT2A/C结合的细胞核的患病率和百分比是对照的两倍。在年龄较大的SIDS婴儿中,具有低5-HT2A/C结合的细胞核百分比更高。在>80%的年龄较大的SIDS婴儿中,低5-HT2A/C结合表征舌下神经核,迷走神经背核,孤束核,和小脑子网的核(对血压调节很重要)。一起,我们从SIDS婴儿和5-羟色胺能功能障碍动物模型的发现表明,一些SIDS病例代表5-羟色胺病。我们提出了新的假设,还有待测试,关于血清素能子网内的缺陷如何导致SIDS。
    The failure of chemoreflexes, arousal, and/or autoresuscitation to asphyxia may underlie some sudden infant death syndrome (SIDS) cases. In Part I, we showed that some SIDS infants had altered 5-hydroxytryptamine (5-HT)2A/C receptor binding in medullary nuclei supporting chemoreflexes, arousal, and autoresuscitation. Here, using the same dataset, we tested the hypotheses that the prevalence of low 5-HT1A and/or 5-HT2A/C receptor binding (defined as levels below the 95% confidence interval of controls-a new approach), and the percentages of nuclei affected are greater in SIDS versus controls, and that the distribution of low binding varied with age of death. The prevalence and percentage of nuclei with low 5-HT1A and 5-HT2A/C binding in SIDS were twice that of controls. The percentage of nuclei with low 5-HT2A/C binding was greater in older SIDS infants. In >80% of older SIDS infants, low 5-HT2A/C binding characterized the hypoglossal nucleus, vagal dorsal nucleus, nucleus of solitary tract, and nuclei of the olivocerebellar subnetwork (important for blood pressure regulation). Together, our findings from SIDS infants and from animal models of serotonergic dysfunction suggest that some SIDS cases represent a serotonopathy. We present new hypotheses, yet to be tested, about how defects within serotonergic subnetworks may lead to SIDS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    恶心和呕吐是应对侵入身体的病原体和毒素的重要防御反应。孤束核(NTS)对于启动这些反应很重要。然而,NTS的分子异质性和细胞多样性阻碍了对这些防御反应的更好理解。这里,我们构建了NTS细胞的单核转录组图谱,发现了可能参与这些防御性反应的多个NTS神经元群.其中,我们鉴定了Calbindin1阳性(Calb1+)NTS神经元,这些神经元在分子上不同于Tac1+神经元。这些Calb1神经元对于由蜡状芽孢杆菌分泌的呕吐毒素cereulide诱导的恶心和干涩至关重要。引人注目的是,我们发现cereulide可以直接调节支配Calb1+NTS神经元的迷走神经感觉神经元,一种不同于葡萄球菌肠毒素A引起的恶心和干馏的新机制,我们的NTS神经元转录组学图谱和功能分析揭示了cereulide诱导干馏样行为的神经机制。这些结果表明,大脑中的分子和细胞复杂性是对病原体和毒素多样性的防御反应的基础。
    Nausea and vomiting are important defensive responses to cope with pathogens and toxins that invade the body. The nucleus of the solitary tract (NTS) is important for initiating these responses. However, the molecular heterogeneities and cellular diversities of the NTS occlude a better understanding of these defensive responses. Here, we constructed the single-nucleus transcriptomic atlas of NTS cells and found multiple populations of NTS neurons that may be involved in these defensive responses. Among these, we identified Calbindin1-positive (Calb1+) NTS neurons that are molecularly distinct from Tac1+ neurons. These Calb1+ neurons are critical for nausea and retching induced by cereulide; an emetic toxin secreted by Bacillus Cereus. Strikingly, we found that cereulide can directly modulate vagal sensory neurons that innervate Calb1+ NTS neurons, a novel mechanism distinct from that for nausea and retching induced by Staphylococcal enterotoxin A. Together, our transcriptomic atlas of NTS neurons and the functional analyses revealed the neural mechanism for cereulide-induced retching-like behavior. These results demonstrate the molecular and cellular complexities in the brain that underlie defensive responses to the diversities of pathogens and toxins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    激素瘦素通过外周和中枢神经系统的作用减少食物摄入,包括孤立道(NTS)的后脑核。NTS通过迷走神经传入接收内脏感觉信息,包括来自胃肠道的信息,然后将其传递到对控制食物摄入至关重要的其他CNS位点。瘦素受体(lepRs)由NTS神经元亚群表达,这些受体的敲除会增加食物摄入量和体重。最近,我们证明了瘦素通过增加NMDAR电流增加了表达lepR的神经元的迷走神经激活,从而增强迷走神经诱发的放电。此外,最近显示这些神经元的化学遗传激活抑制食物摄取。然而,这些神经元接受的迷走神经输入尚未被表征。在这里,我们在取自lepRCreXfloxedTdTomato小鼠的脑切片中进行了全细胞记录,发现NTS的lepR神经元被对TRPV1激动剂辣椒素敏感的C型传入的单突触输入直接激活。在NTS切片上施用CCK刺激了lepR神经元上的自发谷氨酸释放并诱导了动作电位放电;CCKR1介导的作用。有趣的是,NMDAR激活有助于自发性EPSC携带的电流并增强CCK诱导的放电。外周CCK也增加了这些神经元的c-fos表达,表明它们在体内被CCK敏感的迷走神经传入神经激活。我们的结果表明,大多数NTSlepR神经元接受来自CCK敏感的C迷走神经型传入的直接输入,外周和中枢CCK都能够激活这些神经元,NMDAR能够增强这些作用。
    The hormone leptin reduces food intake through actions in the peripheral and central nervous systems, including in the hindbrain nucleus of the solitary tract (NTS). The NTS receives viscerosensory information via vagal afferents, including information from the gastrointestinal tract, which is then relayed to other central nervous system (CNS) sites critical for control of food intake. Leptin receptors (lepRs) are expressed by a subpopulation of NTS neurons, and knockdown of these receptors increases both food intake and body weight. Recently, we demonstrated that leptin increases vagal activation of lepR-expressing neurons via increased NMDA receptor (NMDAR) currents, thereby potentiating vagally evoked firing. Furthermore, chemogenetic activation of these neurons was recently shown to inhibit food intake. However, the vagal inputs these neurons receive had not been characterized. Here we performed whole cell recordings in brain slices taken from lepRCre × floxedTdTomato mice and found that lepR neurons of the NTS are directly activated by monosynaptic inputs from C-type afferents sensitive to the transient receptor potential vanilloid type 1 (TRPV1) agonist capsaicin. CCK administered onto NTS slices stimulated spontaneous glutamate release onto lepR neurons and induced action potential firing, an effect mediated by CCKR1. Interestingly, NMDAR activation contributed to the current carried by spontaneous excitatory postsynaptic currents (EPSCs) and enhanced CCK-induced firing. Peripheral CCK also increased c-fos expression in these neurons, suggesting they are activated by CCK-sensitive vagal afferents in vivo. Our results indicate that the majority of NTS lepR neurons receive direct inputs from CCK-sensitive C vagal-type afferents, with both peripheral and central CCK capable of activating these neurons and NMDARs able to potentiate these effects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    内脏传入的致敏和高张性与心血管和呼吸道疾病状态的发展和进展高度相关。在这次审查中,我们描述了炎症过程调节内脏传入敏感性和张力的证据,影响心血管和呼吸系统的控制。一些炎症介质,如一氧化氮,血管紧张素II,内皮素-1和精氨酸加压素可以抑制压力感受器传入,并有助于心血管疾病中观察到的压力反射损害。细胞因子可直接作用于向中枢神经系统(CNS)传递信息的外周传入终端。TLR-4受体,识别脂多糖,在结状神经节和岩状神经节中发现,并与破坏血脑屏障有关,可以加强炎症过程。例如,细胞因子可能穿过血脑屏障进入中枢神经系统。此外,促炎细胞因子,如IL-1β,IL-6,TNF-α及其一些受体已在结节性神经节和颈动脉体中得到鉴定。这些促炎细胞因子还使背根神经节敏感或在孤束核中释放。在心血管疾病中,大脑中的促炎介质增加,心,船只,和血浆,并可能在局部或全身起作用以激活/敏感传入神经末梢。最近的证据表明,颈动脉体化学感受器细胞可能会感觉到全身的促炎分子,支持颈动脉体是中枢抗炎反射传入途径的一部分的新提议。促炎介质如何影响内脏传入信号并有助于心血管疾病病理生理学的确切机制有待进一步研究。
    The sensitization and hypertonicity of visceral afferents are highly relevant to the development and progression of cardiovascular and respiratory disease states. In this review, we described the evidence that the inflammatory process regulates visceral afferent sensitivity and tonicity, affecting the control of the cardiovascular and respiratory system. Some inflammatory mediators like nitric oxide, angiotensin II, endothelin-1, and arginine vasopressin may inhibit baroreceptor afferents and contribute to the baroreflex impairment observed in cardiovascular diseases. Cytokines may act directly on peripheral afferent terminals that transmit information to the central nervous system (CNS). TLR-4 receptors, which recognize lipopolysaccharide, were identified in the nodose and petrosal ganglion and have been implicated in disrupting the blood-brain barrier, which can potentiate the inflammatory process. For example, cytokines may cross the blood-brain barrier to access the CNS. Additionally, pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α and some of their receptors have been identified in the nodose ganglion and carotid body. These pro-inflammatory cytokines also sensitize the dorsal root ganglion or are released in the nucleus of the solitary tract. In cardiovascular disease, pro-inflammatory mediators increase in the brain, heart, vessels, and plasma and may act locally or systemically to activate/sensitize afferent nervous terminals. Recent evidence demonstrated that the carotid body chemoreceptor cells might sense systemic pro-inflammatory molecules, supporting the novel proposal that the carotid body is part of the afferent pathway in the central anti-inflammatory reflexes. The exact mechanisms of how pro-inflammatory mediators affects visceral afferent signals and contribute to the pathophysiology of cardiovascular diseases awaits future research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Review
    后脑肾上腺素能/去甲肾上腺素能细胞核促进对身体和心理挑战的内分泌和自主神经反应。合成肾上腺素和去甲肾上腺素的神经元靶向下丘脑结构以调节内分泌反应,而下降的脊柱投射调节交感神经功能。此外,这些神经元对各种压力相关的代谢做出反应,自主性,和心理社会挑战。因此,肾上腺素能和去甲肾上腺素能核是促进生理适应以维持体内平衡的整合中心。然而,合成肾上腺素和去甲肾上腺素的神经元感知相互感觉和外感觉线索以协调生理反应的确切机制尚未完全阐明。此外,这些细胞在慢性应激中的调节作用受到的关注有限。这篇小型综述合并了临床前啮齿动物关于脑干肾上腺素和去甲肾上腺素细胞的组织和功能的研究报告,为这些细胞核如何协调内分泌和自主生理提供了框架。这包括识别产生后脑肾上腺素和去甲肾上腺素的细胞群,以及它们在通过神经分泌和自主神经参与应激反应中的作用。尽管在时间上和机械上都不同,内分泌和自主应激轴是互补和相互联系的。因此,脑干肾上腺素能/去甲肾上腺素能核团和外周生理系统之间的相互作用对于综合应激反应和机体存活是必要的。
    Hindbrain adrenergic/noradrenergic nuclei facilitate endocrine and autonomic responses to physical and psychological challenges. Neurons that synthesize adrenaline and noradrenaline target hypothalamic structures to modulate endocrine responses while descending spinal projections regulate sympathetic function. Furthermore, these neurons respond to diverse stress-related metabolic, autonomic, and psychosocial challenges. Accordingly, adrenergic and noradrenergic nuclei are integrative hubs that promote physiological adaptation to maintain homeostasis. However, the precise mechanisms through which adrenaline- and noradrenaline-synthesizing neurons sense interoceptive and exteroceptive cues to coordinate physiological responses have yet to be fully elucidated. Additionally, the regulatory role of these cells in the context of chronic stress has received limited attention. This mini-review consolidates reports from preclinical rodent studies on the organization and function of brainstem adrenaline and noradrenaline cells to provide a framework for how these nuclei coordinate endocrine and autonomic physiology. This includes identification of hindbrain adrenaline- and noradrenaline-producing cell groups and their role in stress responding through neurosecretory and autonomic engagement. Although temporally and mechanistically distinct, the endocrine and autonomic stress axes are complementary and interconnected. Therefore, the interplay between brainstem adrenergic/noradrenergic nuclei and peripheral physiological systems is necessary for integrated stress responses and organismal survival.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号