measles virus

麻疹病毒
  • 文章类型: Journal Article
    溶瘤病毒疗法是许多癌症的新兴治疗选择。目前正在临床试验中评估几个病毒家族。更具体地说,在几项早期临床试验中,疫苗株麻疹病毒已成为治疗不同肿瘤类型的有希望的候选者。复制病毒,尤其是没有校对聚合酶的RNA病毒,可以通过选择具有优势基因突变的准种来快速适应变化的环境。随后,这些基因改变可能会削弱病毒治疗的安全性.在这项研究中,我们证明,在生产者或癌细胞系中病毒复制的延长期之后,疫苗株来源的麻疹病毒的准种共有序列在整个非节段负链RNA基因组中产生的突变数量非常少.有趣的是,我们检测到基因组中遗传改变的非随机分布,从3'基因组开始到5'末端的突变频率总体下降。将连续传代的病毒与生产细胞上的亲本病毒进行比较,我们发现,获得性共有突变并没有显著改变病毒复制动力学或溶细胞效能.总的来说,我们的数据证实了溶瘤麻疹病毒的基因组稳定性和优异的安全性,从而支持其作为一种有前途的病毒免疫治疗的持续发展和临床翻译。
    Oncolytic virotherapy is an emerging treatment option for numerous cancers, with several virus families currently being evaluated in clinical trials. More specifically, vaccine-strain measles virus has arisen as a promising candidate for the treatment of different tumour types in several early clinical trials. Replicating viruses, and especially RNA viruses without proofreading polymerases, can rapidly adapt to varying environments by selecting quasispecies with advantageous genetic mutations. Subsequently, these genetic alterations could potentially weaken the safety profile of virotherapy. In this study, we demonstrate that, following an extended period of virus replication in producer or cancer cell lines, the quasispecies consensus sequence of vaccine strain-derived measles virus accrues a remarkably small number of mutations throughout the nonsegmented negative-stranded RNA genome. Interestingly, we detected a nonrandom distribution of genetic alterations within the genome, with an overall decreasing frequency of mutations from the 3\' genome start to its 5\' end. Comparing the serially passaged viruses to the parental virus on producer cells, we found that the acquired consensus mutations did not drastically change viral replication kinetics or cytolytic potency. Collectively, our data corroborate the genomic stability and excellent safety profile of oncolytic measles virus, thus supporting its continued development and clinical translation as a promising viro-immunotherapeutic.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    According to their cellular receptor use, measles virus (MV) strains can be separated into two phenotypes, CD46-using and CD46-non-using. A long chimeric receptor, CD46CD[55-46], was generated from the CD46 backbone, encompassing the four short consensus repeat (SCR) domains of CD46 linked via a flexible glycine hinge to SCR1 and SCR2 of CD55, SCR3 and SCR4 of CD46 and the STP, transmembrane and cytoplasmic tail of CD46. This chimeric receptor was proficient for MV binding but deficient in mediating MV-induced cell-to-cell fusion and virus replication, possibly due to the extended distance between the MV haemagglutinin (H) binding site (CD46 SCR1-SCR2) and the cell membrane. When coexpressed with either wild-type CD46 or CD150, this fusion-incompetent receptor exerted a dominant negative effect and inhibited both cell-to-cell fusion and entry of MV with CD46-using, but not CD46-non-using, phenotype. A soluble octameric CD46-C4bpalpha exhibited similar CD46- and CD150-mediated fusion inhibition properties only against CD46-using MV. This suggests that the long CD46CD[55-46] receptor acts by sequestering incoming MV prior to its binding to the shorter functional CD46 or CD150 receptor.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    To define further the accessory role(s) of the CD46 (membrane cofactor protein) short consensus repeat (SCR) III and IV domains in the interaction of CD46 with measles virus (MV), chimeric proteins were generated by substituting domains from the structurally related protein decay accelerating factor (DAF, CD55): x3DAF (exchange of CD46 SCR III) and x4DAF (exchange of SCR IV). Transfected CHO cell lines that stably expressed these chimeric proteins were compared for MV binding and infection. Compared with wild-type CD46 (I-II-III-IV), a significant decrease in MV binding was observed with x4DAF. Despite this limited binding, these cells were still capable of supporting virus entry. In a quantitative fusion assay, no significant differences in fusion were observed as a result of the exchange of either CD46 SCR III or IV. However, the down-regulation of cell surface CD46 typically observed following MV infection was abolished with x4DAF, as was the redistribution of CD46 on the cell surface. Thus, CD46 SCR IV appears to be required for optimal virus binding and receptor down-regulation, although importantly, in spite of these functional limitations, x4DAF can still be used for MV entry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The binding of a recombinant soluble form of the measles virus (MV) hemagglutinin (sH) to cells expressing hybrid CD46/CD4 proteins was compared to that of purified virus. For binding of both ligands, both CD46 external short consensus repeats I and II (SCR I and II) in the natural order were essential. The addition of SCR III and IV enhanced virus binding but inhibited sH binding. Accordingly, this lowered the ability of sH to compete with MV binding. Antihemagglutinin monoclonal antibodies selectively inhibited the binding of either sH or MV. Thus, sH and MV share a common binding site in SCR I and II but differ in their apparent avidity to CD46 under the influence of SCR III and IV.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号