kin selection

Kin 选择
  • 文章类型: Journal Article
    Dispersal is ubiquitous throughout the tree of life: factors selecting for dispersal include kin competition, inbreeding avoidance and spatiotemporal variation in resources or habitat suitability. These factors differ in whether they promote male and female dispersal equally strongly, and often selection on dispersal of one sex depends on how much the other disperses. For example, for inbreeding avoidance it can be sufficient that one sex disperses away from the natal site. Attempts to understand sex-specific dispersal evolution have created a rich body of theoretical literature, which we review here. We highlight an interesting gap between empirical and theoretical literature. The former associates different patterns of sex-biased dispersal with mating systems, such as female-biased dispersal in monogamous birds and male-biased dispersal in polygynous mammals. The predominant explanation is traceable back to Greenwood\'s () ideas of how successful philopatric or dispersing individuals are at gaining mates or the resources required to attract them. Theory, however, has developed surprisingly independently of these ideas: models typically track how immigration and emigration change relatedness patterns and alter competition for limiting resources. The limiting resources are often considered sexually distinct, with breeding sites and fertilizable females limiting reproductive success for females and males, respectively. We show that the link between mating system and sex-biased dispersal is far from resolved: there are studies showing that mating systems matter, but the oft-stated association between polygyny and male-biased dispersal is not a straightforward theoretical expectation. Here, an important understudied factor is the extent to which movement is interpretable as an extension of mate-searching (e.g. are matings possible en route or do they only happen after settling in new habitat - or can females perhaps move with stored sperm). We also point out other new directions for bridging the gap between empirical and theoretical studies: there is a need to build Greenwood\'s influential yet verbal explanation into formal models, which also includes the possibility that an individual benefits from mobility as it leads to fitness gains in more than one final breeding location (a possibility not present in models with a very rigid deme structure). The order of life-cycle events is likewise important, as this impacts whether a departing individual leaves behind important resources for its female or male kin, or perhaps both, in the case of partially overlapping resource use.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The evolution of the aging process has long been a biological riddle, because it is difficult to explain the evolution of a trait that has apparently no benefit to the individual. Over 60 years ago, Medawar realized that the force of natural selection declines with chronological age because of unavoidable environmental risks. This forms the basis of the mainstream view that aging arises as a consequence of a declining selection pressure to maintain the physiological functioning of living beings forever. Over recent years, however, a number of articles have appeared that nevertheless propose the existence of specific aging genes; that is, that the aging process is genetically programmed. If this view were correct, it would have serious implications for experiments to understand and postpone aging. Therefore, we studied in detail various specific proposals why aging should be programmed. We find that not a single one withstands close scrutiny of its assumptions or simulation results. Nonprogrammed aging theories based on the insight of Medawar (as further developed by Hamilton and Charlesworth) are still the best explanation for the evolution of the aging process. We hope that this analysis helps to clarify the problems associated with the idea of programmed aging.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号