interplay

相互作用
  • 文章类型: Journal Article
    Plant-derived microRNAs (miRNAs) play a significant role in human health and are \"dark nutrients\", as opposed to traditional plant nutrients, as well as important components of food diversification. Studies have revealed that multiple plant-derived miRNA pathways affect human health. First, plant miRNAs regulate plant growth and development and accumulation of metabolites, which alters the food quality and thus indirectly interferes with the health of the host. Moreover, when absorbed in vivo, some miRNAs may target the host cell mRNAs to affect protein expression. In addition, plant miRNAs target and reshape the human gut microbiota (GM), which interferes with the physiology and metabolism of the host. Therefore, miRNAs play a significant role in the cross-kingdom communication of plants, GM, and the host and in maintaining a balance of the three. Future contributions of plant miRNAs can bring new perspectives and opportunities to better understand food nutrition and health care research, which will facilitate the right exploitation of plant resources.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Coarse cereals and legume grains (CCLGs) are rich in specific macro- and functional elements that are considered important dietary components for maintaining human health. Therefore, determining the precise nutritional mechanism involved in exerting the health benefits of CCLGs can help understand dietary nutrition in a better manner. Evidence suggests that gut microbiota play a crucial role in the function of CCLGs via their complicated interplay with CCLGs. First, CCLGs modulate gut microbiota and function. Second, gut microbiota convert CCLGs into compounds that perform different functions. Third, gut microbiota mediate interactions among different CCLG components. Therefore, using gut microbiota to expound the nutritional mechanism of CCLGs is important for future studies. A precise and rapid gut microbiota research model is required to screen and evaluate the quality of CCLGs. The outcomes of such research may promote the rapid discovery, classification, and evaluation of CCLG resources, thereby opening a new opportunity to guide nutrition-based development of CCLG products.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号