induced pluripotent stem cells

诱导多能干细胞
  • 文章类型: Journal Article
    核膜(NE)蛋白层粘连蛋白A/C(由LMNA编码)中的突变,引起严重形式的扩张型心肌病(DCM),伴有早发性危及生命的心律失常。然而,LMNA相关DCM(LMNA-DCM)中心律失常发生增加的分子机制仍然未知.在这里,我们显示LMNA中的移码突变会导致异常的Ca2处理,LMNA-DCM患者特异性iPSC衍生心肌细胞(iPSC-CMs)中的心律失常和NE畸形。机械上,层粘连蛋白A与沉默蛋白1(SIRT1)相互作用,其中突变体层粘连蛋白A/C加速SIRT1的降解,导致线粒体功能障碍和氧化应激。升高的活性氧(ROS)然后激活Ca2/钙调蛋白依赖性蛋白激酶II(CaMKII)-ryanodine受体2(RYR2)途径,并加剧突变体iPSC-CM中SUN1的积累,导致心律失常和NE变形,分别。一起来看,显示laminA/C缺乏介导的ROS障碍是LMNA-DCM发展的核心。操纵受损的SIRT1活性和过度的氧化应激是LMNA-DCM的潜在未来治疗策略。
    Mutations in the nuclear envelope (NE) protein lamin A/C (encoded by LMNA), cause a severe form of dilated cardiomyopathy (DCM) with early-onset life-threatening arrhythmias. However, molecular mechanisms underlying increased arrhythmogenesis in LMNA-related DCM (LMNA-DCM) remain largely unknown. Here we show that a frameshift mutation in LMNA causes abnormal Ca2+ handling, arrhythmias and disformed NE in LMNA-DCM patient-specific iPSC-derived cardiomyocytes (iPSC-CMs). Mechanistically, lamin A interacts with sirtuin 1 (SIRT1) where mutant lamin A/C accelerates degradation of SIRT1, leading to mitochondrial dysfunction and oxidative stress. Elevated reactive oxygen species (ROS) then activates the Ca2+/calmodulin-dependent protein kinase II (CaMKII)-ryanodine receptor 2 (RYR2) pathway and aggravates the accumulation of SUN1 in mutant iPSC-CMs, contributing to arrhythmias and NE deformation, respectively. Taken together, the lamin A/C deficiency-mediated ROS disorder is revealed as central to LMNA-DCM development. Manipulation of impaired SIRT1 activity and excessive oxidative stress is a potential future therapeutic strategy for LMNA-DCM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    保护韩国本土蝙蝠对于维持生态平衡至关重要,因为它们在昆虫控制中起着至关重要的作用,授粉,和种子在他们的生态系统中传播。本研究详细介绍了使用Sendai重编程试剂盒从两只亚洲和韩国蝙蝠(Hypsugoalaschanicus和Pipistrellusabramus)中建立蝙蝠诱导的多能干细胞(BatiPSC)。BatiPSC的菌落,表现出鲜明的特点,在成功转染后手动选择和扩增。BatiPSC的表征揭示了多能性标志物的表达,例如八聚体结合转录因子4(Oct4),SRY(性别决定区Y)-框2和Nanog,与其他诱导多能干细胞来源相比,Oct4水平显着升高,Myc原癌基因表达降低。BatiPSC显示碱性磷酸酶阳性染色,并显示形成胚状体的能力,同时也在非免疫裸鼠中诱导畸胎瘤。此外,产生表达绿色荧光蛋白(GFP)的BatiPSC,并用于嵌合小鼠生产,在所得小鼠胎儿的颈部区域检测到轻微的GFP信号。这些发现证明了BatiPSC的成功生成和表征,强调它们在嵌合动物模型中的潜在应用,以及对濒危蝙蝠物种的保护。
    Preservation of native Korean bats is crucial for maintaining ecological balance, as they play a vital role in insect control, pollination, and seed dispersal within their ecosystems. The present study details the establishment of bat induced pluripotent stem cells (BatiPSCs) from two Asian and Korean bats (Hypsugo alaschanicus and Pipistrellus abramus) using the Sendai Reprogramming Kit. Colonies of BatiPSCs, exhibiting distinctive features, were manually selected and expanded following successful transfection. Characterization of BatiPSCs revealed the expression of pluripotency markers, such as Octamer-binding transcription factor 4 (Oct4), SRY (sex-determining region Y)-box 2 and Nanog, with notably increased Oct4 levels and reduced Myc proto-oncogene expression compared with those noted in other induced pluripotent stem cell sources. BatiPSCs displayed positive staining for alkaline phosphatase and demonstrated the ability to form embryoid bodies, while also inducing teratomas in non-immune nude mice. Additionally, green fluorescent protein (GFP)-expressing BatiPSCs were generated and used for chimeric mouse production, with slight GFP signals detected in the neck region of the resulting mouse foetuses. These findings demonstrate the successful generation and characterization of BatiPSCs, emphasizing their potential applications in chimeric animal models, and the protection of endangered bat species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CDKL5缺乏症(CDD)是一种衰弱性癫痫性脑病,影响幼儿,没有有效的治疗方法。CDD是由细胞周期蛋白依赖性激酶样5(CDKL5)的致病变异引起的,一种调节神经元关键磷酸化事件的蛋白激酶。对于治疗干预,了解CDKL5的分子途径和磷酸化靶标至关重要。使用无偏的磷酸蛋白质组学方法,我们鉴定了CDKL5的新靶标,包括GTF2I,PPP1R35、GATAD2A和ZNF219在人iPSC来源的神经元细胞中的表达。靶蛋白中的磷酸丝氨酸残基位于CDKL5共有基序中。我们使用互补方法验证了CDKL5对GTF2I和PPP1R35的直接磷酸化。GTF2I控制轴突导向,细胞周期和神经发育通过调节神经元基因的表达。PPP1R35对中心粒伸长和纤毛形态至关重要,在CDD中受损的过程。PPP1R35与已知的CDKL5磷酸靶CEP131相互作用。GATAD2A和ZNF219属于核小体重组脱乙酰酶(NuRD)复合物,调节神经元活动依赖性基因和突触连接。对CDKL5调控的分子途径的深入了解将有助于更好地了解药物疾病途径,以快速开发治疗方法。
    CDKL5 Deficiency Disorder (CDD) is a debilitating epileptic encephalopathy disorder affecting young children with no effective treatments. CDD is caused by pathogenic variants in Cyclin-Dependent Kinase-Like 5 (CDKL5), a protein kinase that regulates key phosphorylation events in neurons. For therapeutic intervention, it is essential to understand molecular pathways and phosphorylation targets of CDKL5. Using an unbiased phosphoproteomic approach we identified novel targets of CDKL5, including GTF2I, PPP1R35, GATAD2A and ZNF219 in human iPSC-derived neuronal cells. The phosphoserine residue in the target proteins lies in the CDKL5 consensus motif. We validated direct phosphorylation of GTF2I and PPP1R35 by CDKL5 using complementary approaches. GTF2I controls axon guidance, cell cycle and neurodevelopment by regulating expression of neuronal genes. PPP1R35 is critical for centriole elongation and cilia morphology, processes that are impaired in CDD. PPP1R35 interacts with CEP131, a known CDKL5 phospho-target. GATAD2A and ZNF219 belong to the Nucleosome Remodelling Deacetylase (NuRD) complex, which regulates neuronal activity-dependent genes and synaptic connectivity. In-depth knowledge of molecular pathways regulated by CDKL5 will allow a better understanding of druggable disease pathways to fast-track therapeutic development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    免疫系统,充当身体的“国防军”,在监视中发挥作用,防御。免疫系统的任何破坏都可能导致免疫相关疾病的发展。广泛的研究表明间充质干细胞(MSCs)在这些疾病中至关重要的免疫调节作用。特别感兴趣的是在特定条件下诱导体细胞的能力,产生一种具有干细胞特征的新细胞类型,称为诱导多能干细胞(iPSC)。iPSCs向MSCs的分化,特异性诱导多能干细胞来源的间充质干细胞(iMSCs),作为解决MSC挑战的潜在解决方案,可能作为传统药物疗法的替代品。此外,iMSC的产品,称为诱导多能干细胞来源的间充质干细胞来源的细胞外囊泡(iMSC-EV),可能表现出类似于iMSC的功能。由于电动汽车的生物学优势,它们已成为“无细胞疗法”的焦点。这里,我们全面总结了iMSCs对免疫细胞的生物学影响,探讨了iMSC和iMSC-EV在疾病中的应用,并简要讨论了电动汽车的基本特征。最后,我们概述了目前与iMSC和iMSC-EV相关的优势和挑战.我们希望这篇与iMSCs和iMSC-EV相关的综述将有助于开发新的疾病治疗方法。
    The immune system, functioning as the body\'s \"defense army\", plays a role in surveillance, defense. Any disruptions in immune system can lead to the development of immune-related diseases. Extensive researches have demonstrated the crucial immunoregulatory role of mesenchymal stem cells (MSCs) in these diseases. Of particular interest is the ability to induce somatic cells under specific conditions, generating a new cell type with stem cell characteristics known as induced pluripotent stem cell (iPSC). The differentiation of iPSCs into MSCs, specifically induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs), hold promise as a potential solution to the challenges of MSCs, potentially serving as an alternative to traditional drug therapies. Moreover, the products of iMSCs, termed induced pluripotent stem cell-derived mesenchymal stem cell-derived extracellular vesicles (iMSC-EVs), may exhibit functions similar to iMSCs. With the biological advantages of EVs, they have become the focus of \"cell-free therapy\". Here, we provided a comprehensive summary of the biological impact of iMSCs on immune cells, explored the applications of iMSCs and iMSC-EVs in diseases, and briefly discussed the fundamental characteristics of EVs. Finally, we overviewed the current advantages and challenges associated with iMSCs and iMSC-EVs. It is our hope that this review related to iMSCs and iMSC-EVs will contribute to the development of new approaches for the treatment of diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Leber的遗传性视神经病变(LHON)是一种与线粒体DNA(mtDNA)突变相关的使人衰弱的线粒体疾病。不幸的是,由于线粒体替代的挑战,LHON患者的可用治疗选择有限.在我们的研究中,我们将LHON尿液细胞重编程为诱导多能干细胞(iPSCs),并将其分化为神经祖细胞(NPCs)和神经元,用于疾病建模.我们的研究表明,LHON神经元表现出显著较高水平的mtDNA突变和线粒体功能降低。确认疾病表型。然而,通过将LHONiPSC衍生的NPCs与间充质干细胞(MSCs)共培养,我们观察到突变mtDNA的显着拯救和LHON神经元线粒体代谢功能的显着改善。这些发现表明,与MSCs共培养可以增强LHONNPCs的线粒体功能,甚至在它们分化为神经元之后。这一发现有望成为LHON患者的潜在治疗策略。
    Leber\'s hereditary optic neuropathy (LHON) is a debilitating mitochondrial disease associated with mutations in mitochondrial DNA (mtDNA). Unfortunately, the available treatment options for LHON patients are limited due to challenges in mitochondrial replacement. In our study, we reprogramming LHON urine cells into induced pluripotent stem cells (iPSCs) and differentiating them into neural progenitor cells (NPCs) and neurons for disease modeling. Our research revealed that LHON neurons exhibited significantly higher levels of mtDNA mutations and reduced mitochondrial function, confirming the disease phenotype. However, through co-culturing LHON iPSC-derived NPCs with mesenchymal stem cells (MSCs), we observed a remarkable rescue of mutant mtDNA and a significant improvement in mitochondrial metabolic function in LHON neurons. These findings suggest that co-culturing with MSCs can enhance mitochondrial function in LHON NPCs, even after their differentiation into neurons. This discovery holds promise as a potential therapeutic strategy for LHON patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    轴突损伤是创伤性损伤和神经退行性疾病的共同特征。损伤后轴突再生和恢复功能的能力是一种在周围神经系统中很容易看到的现象。尤其是在啮齿动物模型中,但人类轴突再生是有限的,并不能导致功能的完全恢复。在这里,我们描述了一个系统,其中可以通过在微流体系统中培养的人诱导多能干细胞(hiPSC)衍生的神经元的实时成像来评估人轴突生长和再生的动力学。细胞体从轴突中分离出来。该系统可以帮助研究轴突生长动力学,并且可以用于测试促进神经系统再生和修复的潜在药物。
    Axonal damage is a common feature of traumatic injury and neurodegenerative disease. The capacity for axons to regenerate and to recover functionality after injury is a phenomenon that is seen readily in the peripheral nervous system, especially in rodent models, but human axonal regeneration is limited and does not lead to full functional recovery. Here we describe a system where dynamics of human axonal outgrowth and regeneration can be evaluated via live imaging of human-induced pluripotent stem cell (hiPSC)-derived neurons cultured in microfluidic systems, in which cell bodies are isolated from their axons. This system could aid in studying axonal outgrowth dynamics and could be useful for testing potential drugs that encourage regeneration and repair of the nervous system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经元的特殊功能和极端几何形状需要对基于长距离微管的运输的独特依赖。通过运动蛋白适当地运输轴突货物对于在整个生命周期的发育和持续功能期间建立电路至关重要。可视化和量化货物运动提供了有关轴突细胞器如何补充的宝贵见解,回收,在传出和传入轴突交通的动态舞蹈中退化。长距离轴突运输特别重要,因为它涵盖了在发育和退行性疾病状态中通常被破坏的途径。这里,我们描述了神经元细胞器,并概述了通过荧光标记的细胞器标记的瞬时表达来实时成像和定量它们在轴突中的运动的方法。该资源为靶蛋白/结构域和适当的采集时间尺度提供了建议,用于在源自人诱导多能干细胞(iPSC)和原代大鼠神经元的培养神经元中可视化不同的神经元货物。
    The specialized function and extreme geometry of neurons necessitates a unique reliance upon long-distance microtubule-based transport. Appropriate trafficking of axonal cargos by motor proteins is essential for establishing circuitry during development and continuing function throughout a lifespan. Visualizing and quantifying cargo movement provides valuable insight into how axonal organelles are replenished, recycled, and degraded during the dynamic dance of outgoing and incoming axonal traffic. Long-distance axonal trafficking is of particular importance as it encompasses a pathway commonly disrupted in developmental and degenerative disease states. Here, we describe neuronal organelles and outline methods for live imaging and quantifying their movement throughout the axon via transient expression of fluorescently labeled organelle markers. This resource provides recommendations for target proteins/domains and appropriate acquisition time scales for visualizing distinct neuronal cargos in cultured neurons derived from human induced pluripotent stem cells (iPSCs) and primary rat neurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Letter
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    单细胞组学技术已经改变了我们对基因组的研究,转录组,和单个细胞水平的蛋白质组景观。特别是,单细胞RNA测序的应用揭示了心脏细胞固有的复杂转录变异,为他们的动态提供有价值的观点。这篇综述的重点是在心血管研究的背景下,单细胞组学与诱导多能干细胞(iPSCs)的整合。提供了一个独特的途径来加深我们对心脏生物学的理解。通过综合各种单细胞技术的见解,我们的目标是阐明心脏健康和疾病的分子复杂性。除了目前的方法,我们探索了新兴范式的潜力,如单细胞/空间组学,深入研究它们揭示心脏组织内细胞成分空间组织的能力。此外,我们期待它们在塑造未来心血管研究中的变革性作用。这篇综述旨在促进该领域知识的进步,提供转录组学分析的协同潜力的全面视角,iPSC应用程序,以及不断发展的空间组学前沿。
    Single-cell omics technologies have transformed our investigation of genomic, transcriptomic, and proteomic landscapes at the individual cell level. In particular, the application of single-cell RNA sequencing has unveiled the complex transcriptional variations inherent in cardiac cells, offering valuable perspectives into their dynamics. This review focuses on the integration of single-cell omics with induced pluripotent stem cells (iPSCs) in the context of cardiovascular research, offering a unique avenue to deepen our understanding of cardiac biology. By synthesizing insights from various single-cell technologies, we aim to elucidate the molecular intricacies of heart health and diseases. Beyond current methodologies, we explore the potential of emerging paradigms such as single-cell/spatial omics, delving into their capacity to reveal the spatial organization of cellular components within cardiac tissues. Furthermore, we anticipate their transformative role in shaping the future of cardiovascular research. This review aims to contribute to the advancement of knowledge in the field, offering a comprehensive perspective on the synergistic potential of transcriptomic analyses, iPSC applications, and the evolving frontier of spatial omics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    实验证据,在体外和体内,表明了来自各种细胞类型的细胞外囊泡(EV)的心脏保护作用,包括诱导多能干细胞衍生的心肌细胞。EV分泌的生物学效应,特别是在缺血和心脏电生理学的背景下,还有待充分探索。因此,本研究的目的是通过采用模拟预处理方法,揭示缺氧期间外泌体(EXO)介导的细胞-细胞信号传导对人诱导的多能干细胞源性心肌细胞(hIPSC-CMs)的影响.使用多电极阵列(MEA)系统测量hIPSC-CM的电生理活性。总共16小时的低氧应激急剧增加了搏动周期。此外,缺氧16小时后,与未处理的细胞相比,用EXOs预处理的hIPSC-CM显示明显更长的搏动期(+15.7%,p<0.05)。此外,与未处理的hIPSC-CM相比,用缺氧EXO预处理在缺氧16小时后导致更快的兴奋-收缩(EC)耦合(-25.3%,p<0.05)。此外,未处理和预处理的hIPSC-CM的microRNA(miR)测序和基因靶预测分析鉴定了10个差异调节的miR和44个基因靶。这些结果揭示了miR的复杂参与,强调与细胞存活相关的基因靶标,收缩,凋亡,活性氧(ROS)调节,和离子通道调制。总的来说,这项研究表明,在缺氧期间由hIPSC-CM分泌的EXOs有益地改变暴露于低氧应激的受体细胞的电生理特性,这可能在制定针对性干预措施以改善缺血性心脏病的预后方面发挥关键作用。
    Experimental evidence, both in vitro and in vivo, has indicated cardioprotective effects of extracellular vesicles (EVs) derived from various cell types, including induced pluripotent stem cell-derived cardiomyocytes. The biological effects of EV secretion, particularly in the context of ischemia and cardiac electrophysiology, remain to be fully explored. Therefore, the goal of this study was to unveil the effects of exosome (EXO)-mediated cell-cell signaling during hypoxia by employing a simulated preconditioning approach on human-induced pluripotent stem cell-derived cardiomyocytes (hIPSC-CMs). Electrophysiological activity of hIPSC-CMs was measured using a multielectrode array (MEA) system. A total of 16 h of hypoxic stress drastically increased the beat period. Moreover, hIPSC-CMs preconditioned with EXOs displayed significantly longer beat periods compared with non-treated cells after 16 h of hypoxia (+15.7%, p < 0.05). Furthermore, preconditioning with hypoxic EXOs resulted in faster excitation-contraction (EC) coupling compared with non-treated hIPSC-CMs after 16 h of hypoxia (-25.3%, p < 0.05). Additionally, microRNA (miR) sequencing and gene target prediction analysis of the non-treated and pre-conditioned hIPSC-CMs identified 10 differentially regulated miRs and 44 gene targets. These results shed light on the intricate involvement of miRs, emphasizing gene targets associated with cell survival, contraction, apoptosis, reactive oxygen species (ROS) regulation, and ion channel modulation. Overall, this study demonstrates that EXOs secreted by hIPSC-CM during hypoxia beneficially alter electrophysiological properties in recipient cells exposed to hypoxic stress, which could play a crucial role in the development of targeted interventions to improve outcomes in ischemic heart conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号